首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
盐水液滴降压蒸发析盐过程传热传质特性   总被引:1,自引:1,他引:1       下载免费PDF全文
刘璐  王茉  刘琰  毕勤成  刘彦丰 《化工学报》2015,66(7):2426-2432
针对单个盐水(NaCl溶液)液滴在降压环境下蒸发析盐的传热传质过程建立了数学模型。模型考虑了多孔盐壳在液滴表面的形成过程,降压过程引起的气流运动,液核通过多孔介质的传质扩散,以及液滴表面的蒸发换热和对流换热。将实验数据与计算结果对比,验证了模型的有效性。通过模型计算获得了液滴表面温度及液滴质量随时间的变化。结果表明盐水液滴在降压环境下蒸发析盐过程的温度变化分为4个阶段:温度骤降阶段、温度回升阶段、平衡温度阶段和温度上升阶段。平衡温度阶段,盐壳界面运动较慢,随蒸发进行,液核尺寸逐渐减小,盐壳界面运动速度加快。理论分析了环境压力对盐水液滴蒸发析盐过程的影响,环境压力越低,平衡温度越低,盐分完全析出时间越短。  相似文献   

2.
盐水溶液的降压蒸发广泛应用于海水淡化和工业制盐等领域,因此研究盐水在降压过程中的蒸发特性具有重要意义,有助于解决我国水资源缺乏问题。本文通过数值模拟的方法研究了降压环境下盐水液滴蒸发析盐过程,获得了盐析质量和液滴温度随时间的变化。采用的工质为饱和盐水,液滴的初始温度分别为20℃、15℃、10℃;环境压力从0.1MPa降至2000~10000Pa。通过与实验数据相对比,验证了本文模型的有效性。通过该数学模型,分析了影响析盐率和液滴温度变化的主要因素。结果表明:液滴直径越大,在蒸发过程中其析盐率越高,但温度变化越慢;压降速率越快,液滴蒸发速率越快,析盐率越大,温度变化也越快;液滴初始温度越高,蒸发速率越快,液滴表面析盐率越高,但不同初始温度的盐水液滴,在蒸发过程中其最终温度趋于一致。  相似文献   

3.
张舒蕾  李冰杰  蒋健  董新宇  刘璐 《化工学报》2022,73(12):5537-5546
针对凸面恒温基底上的固着液滴蒸发过程开展了实验和理论研究。实验研究方面,搭建了凸面恒温基底上蒸馏水液滴蒸发的可视化实验系统,捕获了液滴蒸发过程形态变化,使用红外热像仪获得了液滴表面温度分布。理论研究方面,基于环形坐标系建立了凸面恒温基底上固着液滴蒸发的传热传质模型,推导出液滴内部温度分布及其周围蒸气浓度分布的解析解。将模型结果与实验数据进行对比,验证了计算模型的可靠性。研究结果表明:模型计算需考虑蒸发冷却效应,提高基底温度和减小基底曲率直径均可提高液滴蒸发速率;相较于平面基底,凸面基底上液滴的铺展半径更大,钉扎时间延长,总蒸发时间减小,液滴蒸发主要遵循恒定接触半径蒸发模式。此外,液滴/空气界面处的过余温度沿液滴表面从中心到接触线方向单调递增,随着蒸发过程的进行,液滴整体温度分布趋于均匀。研究结果有助于深入掌握凸面基底上固着液滴蒸发的传热传质机理。  相似文献   

4.
李钰璨  胡定华  刘锦辉 《化工进展》2022,41(7):3493-3501
以氧化铝纳米流体液滴为研究对象,本文建立了基于任意拉格朗日-欧拉(ALE)法的液滴蒸发瞬态模型,对液滴蒸发过程中蒸汽浓度、纳米颗粒浓度、温度等进行多物理场耦合,并考虑了Marangoni流对液滴蒸发的影响,同时研究还结合蒸发实验可视化结果,分析了氧化铝纳米流体液滴的瞬态蒸发速率随时间的演化规律,讨论了颗粒体积分数和基板温度对蒸发模式的影响。结果表明,在液滴蒸发过程开始时,纳米流体液滴保持定接触半径蒸发模式,气液界面面积逐渐减小,瞬态蒸发速率也呈逐渐减小的趋势;当颗粒体积分数增大至26%时,瞬态蒸发速率曲线达到驻点;蒸发接近完全时,由于Marangoni流影响了内部流场、强化了内部传热,且液滴在已沉积在基板上的颗粒表面形成液膜,瞬态蒸发速率迅速增大。  相似文献   

5.
车用内燃机、航空发动机燃料的主要成分为正庚烷液体。液体燃烧属于扩散型燃烧,燃料先雾化成油雾,然后蒸发,燃油蒸气在气态扩散火焰中燃烧。油雾蒸发是液体燃烧中的重要过程,是决定液体燃烧的燃烧速率的关键步骤。建立了一个二维准稳态的液滴蒸发数值模型,分析了液滴蒸发的熵产,推导出了三维笛卡尔坐标系下的传质熵产公式。基于Fluent软件进行了数值模拟,结果显示低Reynolds数空气来流中的液滴蒸发过程的熵产主要由导热熵产组成,且液滴蒸发越容易,相对总熵产越小,从热力学角度来看其液滴蒸发过程更优。  相似文献   

6.
盐水液滴降压环境下蒸发过程   总被引:3,自引:1,他引:2       下载免费PDF全文
骆骞  毕勤成  韩彦宁  张巧玲 《化工学报》2013,64(6):2001-2006
盐水溶液在降压环境下的蒸发过程的研究,主要集中在海水淡化领域的降膜蒸发过程应用方面和工业制盐方面的平坦表面的蒸发过程的研究。而本文主要集中研究各种实验因素对于液滴温度变化的影响。对于多组分液滴降压环境下相变过程的研究,实验采用浓度为15%和6%的盐水溶液作为一组比较工质,在初始环境压力为94.5~97 kPa,最终环境压力范围为50~3000 Pa,液滴的初始温度范围为7~30℃,初始直径范围为1~3 mm的条件下进行实验。通过实验数据分析可知:盐水液滴在降压蒸发过程中的中心温度变化有析盐和不析盐两种现象,随着水分不断地蒸发,当液滴浓度达到22.4%而且温度足够低时就会析出盐分,否则,不会出现析盐现象;同时分析不同浓度、不同最终环境压力、不同初始温度和不同初始直径对液滴相变过程和温度变化的影响,并且观察环境压力降低和液滴温度变化之间的关系。  相似文献   

7.
本文分析了液滴在不互溶的液相介质中上升汽化时的传热和传质,导出了数模,进行了数值求解,获知在泡滴与液相接触的汽液边界处温度下降和浓度升高,存在着溶液的过冷(或过饱和)边界层。实验结果与数模计算结果表明,该模型能够较好地预測液滴汽化的整体特性。  相似文献   

8.
郭洋裕  张昊春  于海燕  Jin Yan  李垚 《化工学报》2014,65(6):1971-1977
车用内燃机、航空发动机燃料的主要成分为正庚烷液体。液体燃烧属于扩散型燃烧,燃料先雾化成油雾,然后蒸发,燃油蒸气在气态扩散火焰中燃烧。油雾蒸发是液体燃烧中的重要过程,是决定液体燃烧的燃烧速率的关键步骤。建立了一个二维准稳态的液滴蒸发数值模型,分析了液滴蒸发的熵产,推导出了三维笛卡尔坐标系下的传质熵产公式。基于Fluent软件进行了数值模拟,结果显示低Reynolds数空气来流中的液滴蒸发过程的熵产主要由导热熵产组成,且液滴蒸发越容易,相对总熵产越小,从热力学角度来看其液滴蒸发过程更优。  相似文献   

9.
基底厚度对蒸发液滴表面温度分布的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
张凯  王依霖  徐学锋 《化工学报》2015,66(2):703-708
蒸发液滴的表面温度分布对液滴的液体流动和颗粒沉积有着重要的影响。获得液滴表面温度目前主要采用数值计算方法。针对有限厚度基底上的蒸发液滴,分析了网格划分对液滴表面温度计算结果的影响。结果表明,相比于液滴边缘附近区域,液滴中心区域网格的细化对计算结果影响不大;而在接触线附近,相比于网格尺寸,网格细化区域大小对计算结果的影响也很小。利用数值方法研究了基底厚度对蒸发液滴表面温度分布特性的影响,发现随着基底厚度的改变液滴表面出现3种温度分布模式:(1)从液滴顶点到边缘处表面温度逐渐升高;(2)液滴表面温度非单调变化;(3)从液滴顶点到边缘处表面温度逐渐降低。考虑热传导路径长度和蒸发制冷的共同作用,对不同表面温度分布模式进行了解释,并获得了(hR,q)坐标平面上的表面温度分布模式相图。本文结果将有助于对液滴蒸发过程的理解,并为蒸发诱导自组装、喷墨印刷等技术提供理论依据。  相似文献   

10.
干燥涉及众多生产领域,卷烟加工过程中存在干燥环节,滚筒烘丝机是用于干燥烟丝的主要设备。在滚筒烘丝机内,烟丝与周围环境进行热质交换,不同的运行控制条件,将直接影响烟丝的品质。由于干燥过程受众多因素的影响,至今烟草加工企业对烘丝机内部烟丝的传热传质特性缺乏深层次的认识,不利于烟丝品质的提高。针对上述背景,本文基于传热传质学、流体力学、多相流动等相关理论,通过计算机数值模拟方法,建立并求解滚筒内的传热传质数学模型,获得不同操作条件下烟丝温度、含水率变化的详细信息,并将所得结果与实际生产数据相验证。研究结果表明,烟丝与气流逆流流动条件下,干燥过程存在三个阶段:预热段、恒速段、降速段,烟丝含水率先升后降,烟丝温度经历先升高、后降低、再升高的过程;顺流流动条件下,干燥过程存在两个阶段:预热段与恒速段,烟丝含水率沿程单调下降,烟丝温度在预热段急剧上升,在恒速段平缓上升。  相似文献   

11.
单个液滴蒸发模型中不同质量传递公式的有效性分析   总被引:7,自引:4,他引:7  
液滴蒸发是液体喷雾的重要物理过程,文献中使用了不同的模型计算液滴蒸发中的质量流率。依据质量传递驱动力HM的处理,可将这些模型归类于三种不同形式,即经典模型、质量类比模型和漂移流动模型。本文对这些模型的来源和假设作了分析和总结,发现漂移流动模型考虑了Stefan效应和质量迁移,应为正确的表述,而经典模型忽略了瞬态效应,质量类比模型忽略了Stefan流效应。最后以两种不同蒸发率条件下的液滴蒸发为例进行计算,研究了不同质量传递驱动力对液滴蒸发的影响, 发现经典模型和质量类比模型都对液滴的蒸发估计过低,且高蒸发率下三种模型对液滴蒸发特性的影响更显著。  相似文献   

12.
烧结床层的热质分析   总被引:2,自引:2,他引:0       下载免费PDF全文
刘斌  冯妍卉  姜泽毅  张欣欣 《化工学报》2012,63(5):1344-1353
基于烧结生产的复杂物理化学过程,建立了烧结床层传热、传质和流动的二维非稳态数学模型,考虑了孔隙率、物料颗粒当量直径等床层结构影响参数的变化,并对气固传热系数进行了修正。通过数值计算,获得了烧结床层的温度场、结构变化和烟气的流场、温度场、浓度场等。烟气出口温度、床层总压降与生产实测值吻合较好,验证了数学模型的正确性。进一步分析了燃料配比、风量和给料温度等操作参数对烧结过程的影响。研究结果表明:燃烧带的厚度、最高温度随着烧结过程的进行而逐渐增加。床层孔隙率、颗粒当量直径的变化主要发生在燃烧带的熔融、冷凝阶段。料层压损最大的是燃烧熔融层,其次是混合料带,最小的是烧结矿层。增加焦粉含量、提高烧结混合料的初温,有利于提高成矿质量;风量过大时,会造成成矿质量下降、生产成本提高。  相似文献   

13.
林晗丹  焦放健  余光雄  颜俊  沙勇 《化工学报》2013,64(8):2846-2852
通过氮气吹扫双组分液滴,用激光投影法定性观察由于轻组分向气相扩散导致的Marangoni对流结构,结果表明Marangoni对流以小尺度涡流结构和大尺度对称循环流动的形式出现,其中乙醇-水体系首先出现小尺度涡流结构,涡流不断长大合并;丙酮-水体系则以大尺度对称循环对流结构为主,随后在近界面处形成小尺度涡流结构。采用氮气吹扫乙醇-水及丙酮-水静止悬垂单液滴的方法,通过比较实验测量传质系数与理论预测值,表明液滴近界面处Marangoni对流小尺度涡结构对传质促进作用较小,而液滴内大尺度循环对流结构对传质促进作用大。  相似文献   

14.
薛小慧  袁梦丽  宋云彩  冯杰 《化工进展》2022,41(12):6245-6254
为探索在固定床反应器中有机固废颗粒热解过程中的热量、质量传递机理,本研究从颗粒尺度上对有机固废松木屑颗粒热解过程建模分析,模型中考虑了焦油的二次裂解反应及挥发分在颗粒孔隙中的质量、动量传递过程,并采用达西定律模拟了挥发分在颗粒孔隙内的流动现象,对颗粒热解过程的吸热反应以及挥发分逸出时的对流换热对颗粒温度的影响进行考察。基于两步反应动力学模型,探讨了不同颗粒尺寸、热解温度对有机固废松木屑颗粒热解过程的影响。结果表明,热解吸热反应和挥发分的对流换热阻碍了热量向颗粒中心的传递,延长了颗粒达到均温的时间;松木屑颗粒热解时,颗粒内会存在明显的温度梯度,在颗粒表面主要受化学反应动力学限制,在颗粒内部则主要受热量传递过程限制。此外,热解温度越低,粒径越大,颗粒内部的传热阻力越大。松木屑颗粒完全热解所需时间会随着颗粒粒径的增大而增加,但当颗粒粒径在10mm以上时,随着颗粒粒径的增大,颗粒完全热解所需时间的增量要大于10mm以下颗粒。  相似文献   

15.
通过研究系统中填料蒸发器的蒸发传质传热过程以及两相流动特性,采用计算流体力学(computational fluid dynamics,CFD)中离散相与连续相耦合的方法来模拟规整填料内部通道的蒸发传质传热过程,实现了填料蒸发器中两相传质传热的过程以及液滴流动的可视化,为研究气液两相在规整填料内的流动提供了一种模拟方法。通过与实验结果的比较,最终选用RNG k-ε湍流模型来分析规整填料内部气液两相传质传热以及流动情况。数值模拟研究了规整填料板间距对填料内部气液两相传质传热以及液滴运动影响,发现随着板间距的增大,填料内部压力降逐渐降低,出口空气中水蒸气的含量不断减小,液滴蒸发速率降低,液滴进出口质量差减小,气相出口温度逐渐降低,蒸发传质传热效率降低。随着气速的增大,出口空气中水蒸气的含量不断减小,液滴蒸发速率增加,气相出口温度降低,气液两相传质传热效率降低。  相似文献   

16.
固定床中丝状颗粒的传热传质特性   总被引:1,自引:0,他引:1       下载免费PDF全文
目前对于固定床中丝状填充颗粒传热传质特性的认识仍处于初始阶段。为了能够从颗粒尺度的微观层面揭示丝状颗粒与气体、颗粒与颗粒之间的热、质传递机理,建立了一种丝状颗粒传热传质数学模型,之后将离散单元法与计算流体力学相结合,对实验中较难获得的床层局部流动及传递信息进行了数值模拟,并着重分析比较了气流入口温度以及表观气速等关键因素对固定床中丝状颗粒温度和含水率变化的影响规律。通过模拟结果与实验数据的对比,验证了所建模型的可行性。研究结果表明:同一时刻,固定床中颗粒温度大体上是随着床层高度的增加而降低,含水率则是随着床层高度的增加而升高;气流入口温度对于固定床中丝状颗粒平均温度的提升起着主导作用,而颗粒的传质速度则受表观气速的影响更为明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号