首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 133 毫秒
1.
目前的地理信息系统已经趋于完善,但仍受到许多因素的制约.比如,希望通过大量的地理信息数据建立模型,输入一些未知的地理信息,就可以在一定程度上预测目标位置时,现有的技术会遇到许多挑战.本文针对这一问题,提出通过将机器学习中的随机森林算法应用于地址文本,实现一定程度上的地理位置(经纬度)的预测.  相似文献   

2.
预防自然灾害并采取有效的措施进行防护,能有效保障人类生命安全并减少经济损失。在应对森林火灾时,如果能准确预测火灾的毁坏面积,政府和消防人员就能够采取有效的救灾措施控制住灾情。基于此,选取加州大学尔湾分校(University of California Irvine,UCI)网站的森林火灾统计数据,采用随机森林和XGBoost两种集成算法对森林火灾毁坏面积进行预测,并比较两种算法的优势和预测效果。经比较发现,随机森林算法不需要对样本特征进行预筛选,而是通过检测各特征值之间的相关性,平衡误差并进行不断优化,寻找出对火灾面积影响较大的因素。因此,随机森林算法更适用于处理特征值较多的森林火灾数据集。  相似文献   

3.
随机森林是一种组合分类器技术,相较于决策树等单分类器,具有更好的预测和分类性能,但其也存在一些问题:因为随机森林自身的随机性,导致预测结果存在波动性;所使用的原始数据集样本基数大,维数多,增加了随机森林组合分类器的训练时间。针对以上问题,提出优化随机森林模型,对数据集进行数据集预处理和PCA降维操作,引入累计贡献率。结合选择的最佳阈值进行最终的预测结果分类,提高了模型的训练速度、预测准确率和稳定性。实验证明,该方法具有更优越的预测性能。  相似文献   

4.
针对隧道施工过程中沉降量精准预测问题, 提出了一种基于时空特征区域神经网络的施工隧道沉降量预测方法. 依据当前隧道地表下沉量, 通过有效融合多维空间特征量, 对未来的演化趋势做出合理预测. 以白家庄隧道栾川端的地表观测数据为例, 对所提方法的预测性能进行算例分析. 结果表明: 所提预测方法对隧道地表沉降量数据均有较准确的预测效果, 且预测结果也具有一定的鲁棒性. 研究可应用于实际隧道施工的监测管理过程.  相似文献   

5.
陈勤 《福建电脑》2014,30(6):1-2
科学的预测隧道拱顶沉降量是隧道监控设计的重要环节。监控量测中的隧道拱顶沉降数据大多具有"S"形特点,能较好地满足Verhulst模型的需要。应用该模型对隧道拱顶的沉降量进行预测研究,结果表明该模型是一种简单经济、精度较高的灰色数据预报系统。  相似文献   

6.
公路隧道在建设过程中易受到地理环境等因素的影响, 山体结构的不稳定可能会产生潜在的安全隐患, 而隧道沉降量是反应隧道结构变化的一项重要指标, 因此提出一种基于贝叶斯优化XGBoost的隧道沉降监测量预测模型. 由于隧道施工场景复杂干扰严重, 给数据采集和后期沉降变化分析带来困难, 本文首先对原始沉降监测数据进行时间尺度统一, 然后融合时域和空域信息对数据中的异常值、缺失值进行数据修复, 在此基础上, 提出贝叶斯优化的XGBoost集成模型对隧道监测的周边收敛、地表沉降和拱顶沉降数据分别进行分析. 通过与优化前模型以及时序预测模型预测结果进行对比, 发现贝叶斯优化的XGBoost模型精度最高, 对拱顶沉降、地表沉降、周边收敛的平均预测精度可以达到0.979 4. 该模型能够对隧道沉降变化过程进行有效的监测与预测, 对于隧道安全问题的监管具有重要的实际应用价值.  相似文献   

7.
8.
罗知林  陈挺  蔡皖东 《计算机科学》2014,41(4):62-64,74
转发(Retweet)是微博中一个重要的信息传播机制,用户可以将其关注者(Follower)的有趣微博转发到自身平台,分享给他的粉丝(Fan),快速地实现微博信息的传播。主要对微博转发预测进行了研究,首先提取了重要特征,比如用户间的微网络结构、权重比率、用户个人信息等,以研究用户微博转发行为,然后基于以上特征提出了一个随机森林微博转发预测算法(RFMR)。实验结果表明,RFMR算法优于其他分类算法,可以有效地用来预测微博转发。  相似文献   

9.
10.
随机森林理论浅析   总被引:5,自引:0,他引:5  
随机森林是一种著名的集成学习方法,被广泛应用于数据分类和非参数回归。本文对随机森林算法的主要理论进行阐述,包括随机森林收敛定理、泛化误差界以和袋外估计三个部分。最后介绍一种属性加权子空间抽样的随机森林改进算法,用于解决超高维数据的分类问题。  相似文献   

11.
在电信运营商领域,离网预测模型是企业决策者用来发现潜在离网用户(即停用运营商服务)的主要手段。目前离网预测模型都是基于逻辑回归、决策树、神经网络及随机森林等浅层机器学习算法,但是在大数据的背景下,这些浅层算法在预测问题上很难取得更高的精度。因此,提出了一种新型的深层结构模型——深度随机森林,通过将传统浅层随机森林堆积成深层结构模型,获得更高的预测精度。在运营商真实数据上进行了大量实验,结果证明深层随机森林模型比传统浅层机器学习算法在离网预测问题上可以得到更好的效果。同时,增大训练数据量可以进一步提升深层随机森林的预测能力,从而证明了在大数据环境下深层模型的潜力。  相似文献   

12.
现代卫星已逐渐成为国家重大基础设施,为了解其在轨运行状态,需要对遥测数据进行分析;其中快变遥测数据包含了大量卫星服务情况信息,对该数据进行基于机器学习算法的分析建模,可以更好利用特征维度高、数据量大的快变遥测数据,为人工智能在卫星数据建模、运维方面提供一种可能方案;提出一种基于随机森林算法对在轨卫星快变遥测数据进行建模的方法,并引入改进的二次网格搜索方法对模型参数进行调优;使用模型对某频点功率测量值进行预测,结果显示R2值达到0.98以上,预测值误差较小,建立了效果较好的快变遥测数据模型,为实现基于机器学习的快变遥测数据分析提供了一种可能的方案;  相似文献   

13.
为了提高网络安全水平,及时对网络攻击进行主动检测,提出了一种基于随机森林的网络入侵检测模型。该模型能够对大流量攻击进行分布式检测,且检测算法在引入了两个随机性后,即可降低网络流量内不同属性特征字段的噪声,并消除关联性,以便更为便捷、迅速地对攻击进行主动检测。将经典的Adaboost组合多分类器方法与提出的算法在检测率、正确率、精确率三个方面进行对比,体现了该算法的优越性,为大数据时代下网络安全提供了更好的保护。  相似文献   

14.
In ladle furnace, the prediction of the liquid steel temperature is always a hot topic for the researchers. The most of the existing temperature prediction models use small sample set. Today, the precision of them can not satisfy practical production. Fortunately, the large sample set is accumulated from the practical production process. However, a large sample set makes it difficult to build a liquid steel temperature model. To deal with the issue, the random forest method is preferred in this paper, which is a powerful regression method with low complexity and can be designed very quickly. It is with the parallel ensemble structure, uses sample subsets, and employs a simple learning algorithm of sub-models. Then, the random forest method is applied to establish a temperature model by using the data sampled from the production process. The experiments show that the random forest temperature model is more precise than other temperature models.   相似文献   

15.
随机森林在bootstrap的基础上通过对特征进行抽样构建决策树,以牺牲决策树准确性的方式来降低决策树间的相关性,从而提高预测的准确性。但在数据规模较大时,决策树间的相关性仍然较高,导致随机森林的性能表现不佳。为解决该问题,提出一种基于袋外预测的改进算法,通过提高决策树的准确性来提升随机森林的预测性能。将随机森林的袋外预测与原特征相结合并重新训练随机森林,以有效降低决策树的VC-dimension、经验风险、泛化风险并提高其准确性,最终提升随机森林的预测性能。然而,决策树准确性的提高会使决策树间的预测趋于相近,提升了决策树间的相关性从而影响随机森林最终的预测表现,为此,通过扩展空间算法为不同决策树生成不同的特征,从而降低决策树间的相关性而不显著降低决策树的准确性。实验结果表明,该算法在32个数据集上的平均准确率相对原始随机森林提高1.7%,在校正的paired t-test上,该方法在其中19个数据集上的预测性能显著优于原始随机森林。  相似文献   

16.
利率市场化、大数据迅速发展,银行业均表现出明显的"二八定律"现象,20%的优质客户占据了银行的大部分资产.那么,如何防止银行客户流失,尤其是优质客户的流失,已经成为银行越来越关注的问题.因此,建立优质客户流失预警模型就显得尤为重要.以某商业银行为例,重新对客户流失进行定义,重点关注银行优质客户的流失预警,首先使用AP聚...  相似文献   

17.
空气污染不仅危害人类的身心健康,而且还会制约城市的经济发展,其中PM2.5带来的影响尤为突出。为了方便准确地预测出空气中的PM2.5浓度等级,提出了一种基于随机森林的PM2.5浓度等级预测方法,特征因子采用太原市2013年-2017年的气象数据、预测站点的PM2.5浓度变化的时间规律以及与周围站点的时空关联性。该方法首先利用K-Means算法对原始气象数据聚类,降低不同分类器之间的相关性,然后利用欠采样方法对数据进行平衡采样,减少类不平衡对分类器性能的影响,最后利用泛化能力好的随机森林构建预测模型。经过真实数据验证,该方法对PM2.5浓度等级预测具有较好的精确度、召回率与[F]值。  相似文献   

18.
为了能够更好地预测股票的走向趋势,解决在大量特征和大数据下预测精度低的问题,在随机森林的基础上提出了一种基于Pearson系数的随机森林新的组合模型方法.利用Pearson系数进行相关性检验删除无关特征;使用改进的网格搜索法对决策树参数调优;利用随机森林将剩余特征进行建模回归预测,并得出最终结论.实验结果表明:改进后的...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号