首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidimensional time-correlated single photon counting (TCSPC) is based on the excitation of the sample by a high-repetition rate laser and the detection of single photons of the fluorescence signal in several detection channels. Each photon is characterized by its arrival time in the laser period, its detection channel number, and several additional variables such as the coordinates of an image area, or the time from the start of the experiment. Combined with a confocal or two-photon laser scanning microscope and a pulsed laser, multidimensional TCSPC makes a fluorescence lifetime technique with multiwavelength capability, near-ideal counting efficiency, and the capability to resolve multiexponential decay functions. We show that the same technique and the same hardware can be used for precision fluorescence decay analysis and fluorescence correlation spectroscopy (FCS) in selected spots of a sample.  相似文献   

2.
We report the demonstration of time‐correlated single‐photon counting (TCSPC) fluorescence lifetime imaging (FLIM) to ex vivo decayed and healthy dentinal tooth structures, using a white‐light supercontinuum excitation source. By using a 100 fs‐pulsed Ti:Sapphire laser with a low‐frequency chirp to pump a 30‐cm long section of photonic crystal fibre, a ps‐pulsed white‐light supercontinuum was created. Optical bandpass interference filters were then applied to this broad‐bandwidth source to select the 488‐nm excitation wavelength required to perform TCSPC FLIM of dental structures. Decayed dentine showed significantly shorter lifetimes, discriminating it from healthy tissue and hard, stained and thus affected but non‐infected material. The white‐light generation source provides a flexible method of producing variable‐bandwidth visible and ps‐pulsed light for TCSPC FLIM. The results from the dental tissue indicate a potential method of discriminating diseased tissue from sound, but stained tissue, which could be of crucial importance in limiting tissue resection during preparation for clinical restorations.  相似文献   

3.
Over the past years an always growing interest has arisen about the measurement technique of time-correlated single photon counting TCSPC), since it allows the analysis of extremely fast and weak light waveforms with a picoseconds resolution. Consequently, many applications exploiting TCSPC have been developed in several fields such as medicine and chemistry. Moreover, the development of multianode PMT and of single photon avalanche diode arrays led to the realization of acquisition systems with several parallel channels to employ the TCSPC technique in even more applications. Since TCSPC basically consists of the measurement of the arrival time of a photon, the most important part of an acquisition chain is the time measurement block, which must have high resolution and low differential nonlinearity, and in order to realize multidimensional systems, it has to be integrated to reduce both cost and area. In this paper we present a fully integrated time-to-amplitude converter, built in 0.35?μm Si-Ge technology, characterized by a good time resolution (60 ps), low differential nonlinearity (better than 3% peak to peak), high counting rate (16 MHz), low and constant power dissipation (40 mW), and low area occupation (1.38×1.28?mm(2)).  相似文献   

4.
Long-term high-resolution multiphoton imaging of nonlabeled human salivary gland stem cell spheroids has been performed with submicron spatial resolution, 10.5-nm spectral resolution, and picosecond temporal resolution. In particular, the two-photon-excited coenzyme NAD(P)H and flavins have been detected by time-correlated single photon counting (TCSPC). Stem cells increased their autofluorescence lifetimes and decreased their total fluorescence intensity during the adipogenic-differentiation process. In addition, the onset of the biosynthesis of lipid vacuoles was monitored over a period of several weeks in stem-cell spheroids. Time-resolved multiphoton autofluorescence imaging microscopes may become a promising tool for marker-free stem-cell characterization and cell sorting.  相似文献   

5.
Fluorescence lifetime imaging (FLIM) provides a complementary contrast mechanism to fluorescence intensity and ratio imaging in intact tissue. With FLIM the time-resolved decay in fluorescence intensity of (interacting) fluorophores can be quantified by means of time correlated single photon counting (TCSPC). Here we focus on fluorescence lifetime imaging in intact blood vessels. Requisites for imaging in intact tissue are good penetration depth and limited tissue damage. Therefore, in this pilot-study, we performed TCSPC-FLIM using two-photon laser scanning microscopy to determine, with sub-cellular resolution, the fluorescence lifetime of two fluorescent probes. First, we focused on the nucleic acid dye SYTO41 in the various compartments of cells in vitro and in situ in the wall of intact mouse carotid arteries. Second, it was assessed whether the interaction of the lectin WGA-FITC with the endothelial glycocalyx affects its fluorescence lifetime. Results showed comparable mono-exponential fluorescence lifetimes of SYTO41 in the nuclei of cells in vitro and in situ. The slightly shorter fluorescence lifetime observed in the cytoplasm allowed discrimination of the nuclei. SYTO41 displayed strong mitochondrial staining, as was verified by the mitochondrion-specific probe CMXRos. In addition, mitochondrial staining by SYTO41 was accompanied by a green shift in emission. In the mitochondrial region, SYTO41 showed a highly bi-exponential and relatively fast decay, with two distinct lifetime components. It is hypothesized that the fitted bi-exponential decay can either be contributed to (1) the mathematical approximation of the fluorescence intensity decay or (2) the presence of free and DNA-bound SYTO41 in the mitochondrial compartment, leading to two lifetime components. The fluorescence lifetime of WGA-FITC decreased by approximately 25% upon binding to the endothelial glycocalyx. From this study, we conclude that FLIM offers an additional contrast mechanism in imaging intact tissue and provides information on binding status between a probe and its ligand.  相似文献   

6.
We present a novel, multi‐dimensional, time‐correlated single photon counting (TCSPC) technique to perform fluorescence lifetime imaging with a laser‐scanning microscope operated at a pixel dwell‐time in the microsecond range. The unsurpassed temporal accuracy of this approach combined with a high detection efficiency was applied to measure the fluorescent lifetimes of enhanced cyan fluorescent protein (ECFP) in isolation and in tandem with EYFP (enhanced yellow fluorescent protein). This technique enables multi‐exponential decay analysis in a scanning microscope with high intrinsic time resolution, accuracy and counting efficiency, particularly at the low excitation levels required to maintain cell viability and avoid photobleaching. Using a construct encoding the two fluorescent proteins separated by a fixed‐distance amino acid spacer, we were able to measure the fluorescence resonance energy transfer (FRET) efficiency determined by the interchromophore distance. These data revealed that ECFP exhibits complex exponential fluorescence decays under both FRET and non‐FRET conditions, as previously reported. Two approaches to calculate the distance between donor and acceptor from the lifetime delivered values within a 10% error range. To confirm that this method can be used also to quantify intermolecular FRET, we labelled cultured neurones with the styryl dye FM1‐43, quantified the fluorescence lifetime, then quenched its fluorescence using FM4‐64, an efficient energy acceptor for FM1‐43 emission. These experiments confirmed directly for the first time that FRET occurs between these two chromophores, characterized the lifetimes of these probes, determined the interchromophore distance in the plasma membrane and provided high‐resolution two‐dimensional images of lifetime distributions in living neurones.  相似文献   

7.
Photon counting detectors currently used in fluorescence lifetime microscopy have a number of deficiencies that result in less‐than‐ideal signal‐to‐noise ratio of the lifetimes obtained: Either the quantum efficiency is unsatisfactory or the active area is too small, and afterpulsing or tails in the temporal response contribute to overall timing inaccuracy. We have therefore developed a new FLIM detector based on a GaAsP hybrid photomultiplier. Compared with conventional PMTs and SPADs, GaAsP hybrid detectors have a number of advantages: The detection quantum efficiency reaches or surpasses the efficiency of fast SPADs, and the active area is on the order of 5 mm2, compared with 2.5 10?3 mm2 for a SPAD. The TCSPC response is clean, without the bumps and the diffusion tails typical for PMTs and SPADs. Most important, the hybrid detector is intrinsically free of afterpulsing. FLIM results are therefore free of signal‐dependent background, and FCS curves are free of the known afterpulsing peak. We demonstrate the performance of the new detector for multiphoton NDD FLIM and for FCS. Microsc. Res. Tech., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
The membrane dyes Laurdan and di‐4‐ANEPPDHQ can be used to image membrane order due to a spectral blue‐shift in the fluorescence emission between the liquid‐ordered and liquid‐disordered phases. These images typically take the form of a normalized intensity ratio image known as a generalized polarization (GP) plot. Here, we exploit the known excited state photophysics and time‐resolved data acquisition via time‐correlated single‐photon counting (TCSPC) to demonstrate GP contrast enhancement for these two probes of 7 and 31%, respectively. This improvement in image contrast enhancement will be invaluable when studying the role of lipid rafts in fixed and live cell systems. Microsc. Res. Tech. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
Multispectral fluorescence lifetime imaging by TCSPC   总被引:2,自引:0,他引:2  
We present a fluorescence lifetime imaging technique with simultaneous spectral and temporal resolution. The technique is fully compatible with the commonly used multiphoton microscopes and nondescanned (direct) detection. An image of the back-aperture of the microscope lens is projected on the input of a fiber bundle. The input of the fiber bundle is circular, and the output is flattened to match the input slit of a spectrograph. The spectrum at the output of the spectrograph is projected on a 16-anode PMT module. For each detected photon, the encoding logics of the PMT module deliver a timing pulse and the number of the PMT channel in which the photon was detected. The photons are accumulated by a multidimensional time-correlated single photon counting (TCSPC) process. The recording process builds up a four-dimensional photon distribution over the times of the photons in the excitation pulse period, the wavelengths of the photons, and the coordinates of the scan area. The method delivers a near-ideal counting efficiency and is capable of resolving double-exponential decay functions. We demonstrate the performance of the technique for autofluorescence imaging of tissue.  相似文献   

10.
We have characterized a commercial confocal scanning head for the detection of single molecule fluorescence by two-photon excitation. We have verified that the distribution of the fluorescence emitted by dyes and labeled proteins on glass substrates is discrete with quanta proportional to a common reference signal. We describe and test a simple and quantitative tool to discriminate between single molecules and molecular aggregates on single snapshots based on the analysis of the intensity distribution. We have verified the square dependence of the fluorescence intensity vs. the excitation power, suggesting that no appreciable saturation and fast photo-damage of the chromophores takes place at the excitation power employed here.  相似文献   

11.
Dual fluorescence analysis with a single-laser fluorescence-activated cell sorter is dependent on the use of two fluorochromes with similar excitation wavelengths but different emission wavelengths. The dye pair fluorescein and R-phycoerythrin (RPE) have been widely employed for this purpose and interaction between the two dyes has not been observed. Here evidence is presented to show that at high concentrations RPE can completely quench the fluorescein signal in dual fluorescence analysis of human tonsil lymphocytes labelled with pairs of monoclonal antibodies. Reduction in the fluorescein signal correlated with the intensity of red (RPE) staining. This phenomenon can seriously compromise interpretation of dual immunofluorescence carried out on a single laser instrument and can best be avoided by careful analysis of single colour controls.  相似文献   

12.
Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.  相似文献   

13.
One frontier challenge in microscopy and analytical chemistry is the analysis of soft matter at the single molecule level with biological systems as most complex examples. Towards this goal we have developed two novel microscopy methods. Both employ highly specific molecular recognition schemes used by nature-the recognition of specific protein sites by antibodies and ligands. One method uses fluorescence labeled ligands for detecting single molecules in fluid systems like membranes (Fig. 1B). Unitary signals are reliably resolved even for millisecond illumination periods. The knowledge of the unitary signal from single molecules permits the determination of stoichiometries of component association (Fig. 3). Direct imaging of the diffusional path of single molecules became possible for the first time (Fig. 4). Using linear polarized excitation, the angular orientation of single molecules can be analyzed (single molecule linear dichroism, (Fig. 5), which opens a new perspective for detecting conformational changes of single biomolecules. In the other method, an antibody is flexibly linked to the tip of an atomic-force microscope. This permits the identification of receptors in multi-component systems. Molecular mapping of biosurfaces and the study of molecular dynamics in the ms to s range become possible with atomic force microscopy.  相似文献   

14.
Wood cell walls fluoresce as a result of UV and visible light excitation due to the presence of lignin. Fluorescence spectroscopy has revealed characteristic spectral differences in various wood types, notably normal and compression wood. In order to extend this method of characterising cell walls we examined the fluorescence lifetime of wood cell walls using TCSPC (Time‐Correlated Single Photon Counting) as a method of potentially detecting differences in lignin composition and measuring the molecular environment within cell walls. The fluorescence decay curves of both normal and compression wood from pine contain three exponential decay components with a mean lifetime of τm = 473 ps in normal wood and 418 ps in compression wood. Lifetimes are spatially resolved to different cell wall layers or cell types where individual lifetimes are shown to have a log‐normal distribution. The differences in fluorescence lifetime observed in pine compression wood compared to normal wood, are associated with known differences in cell wall composition such as increased p‐hydroxyphenyl content in lignin as well as novel deposition of β(1,4)‐Galactan. Our results indicate increased deposition of lignin fluorophores with shorter lifetimes in the outer secondary wall of compression wood. We have demonstrated the usefulness of fluorescence lifetime imaging for characterising wood cell walls, offering some advantages over conventional fluorescence imaging/spectroscopy. For example, we have measured significant changes in fluorescence lifetime resulting from changes to lignin composition as a result of compression wood formation that complement similar changes in fluorescence intensity.  相似文献   

15.
Time‐resolved microspectrofluorometry in live cells, based on time‐ and space‐correlated single‐photon counting, is a novel method to acquire spectrally resolved fluorescence decays, simultaneously in 256 wavelength channels. The system is calibrated with a full width at half maximum (FWHM) of 90 ps for the temporal resolution, a signal‐to‐noise ratio of 106, and a spectral resolution of 30 (Δλ/Λ). As an exemple, complex fluorescence dynamics of ethidium and cyan fluorescent protein (CFP) in live cells are presented. Free and DNA intercalated forms of ethidium are simultaneously distinguishable by their relative lifetime (1.7 ns and 21.6 ns) and intensity spectra (shift of 7 nm). By analysing the complicated spectrally resolved fluorescence decay of CFP, we propose a fluorescence kinetics model for its excitation/desexcitation process. Such detailed studies under the microscope and in live cells are very promising for fluorescence signal quantification.  相似文献   

16.
Sperm metabolism is fundamental to sperm motility and male fertility. Its measurement is still in its infancy, and recommendations do not exist as to whether or how to standardize laboratory procedures. Here, using the sperm of an insect, the common bedbug, Cimex lectularius, we demonstrate that standardization of sperm metabolism is required with respect to the artificial sperm storage medium and a natural medium, the seminal fluid. We used fluorescence lifetime imaging microscopy (FLIM) in combination with time-correlated single-photon counting (TCSPC) to quantify sperm metabolism based on the fluorescent properties of autofluorescent coenzymes, NAD(P)H and flavin adenine dinucleotide. Autofluorescence lifetimes (decay times) differ for the free and protein-bound state of the co-enzymes, and their relative contributions to the lifetime signal serve to characterize the metabolic state of cells. We found that artificial storage medium and seminal fluid separately, and additively, affected sperm metabolism. In a medium containing sugars and amino acids (Grace's Insect medium), sperm showed increased glycolysis compared with a commonly used storage medium, phosphate-buffered saline (PBS). Adding seminal fluid to the sperm additionally increased oxidative phosphorylation, likely reflecting increased energy production of sperm during activation. Our study provides a protocol to measure sperm metabolism independently from motility, stresses that protocol standardizations for sperm measurements should be implemented and, for the first time, demonstrates that seminal fluid alters sperm metabolism. Equivalent protocol standardizations should be imposed on metabolic investigations of human sperm samples.  相似文献   

17.
Cutting-edge biophysical technologies including total internal reflection fluorescence microscopy, single molecule fluorescence, single channel opening events, fluorescence resonance energy transfer, high-speed exposures, two-photon imaging, fluorescence lifetime imaging, and other tools are becoming increasingly important in immunology as they link molecular events to cellular physiology, a key goal of modern immunology. The primary concern in all forms of microscopy is the generation of contrast; for fluorescence microscopy contrast can be thought of as the difference in intensity between the cell and background, the signal-to-noise ratio. High information-content images can be formed by enhancing the signal, suppressing the noise, or both. As improved tools, such as ICCD and EMCCD cameras, become available for fluorescence imaging in molecular and cellular immunology, it is important to optimize other aspects of the imaging system. Numerous practical strategies to enhance fluorescence microscopy experiments are reviewed. The use of instrumentation such as light traps, cameras, objectives, improved fluorescent labels, and image filtration routines applicable to low light level experiments are discussed. New methodologies providing resolution well beyond that given by the Rayleigh criterion are outlined. Ongoing and future developments in fluorescence microscopy instrumentation and technique are reviewed. This review is intended to address situations where the signal is weak, which is important for emerging techniques stressing super-resolution or live cell dynamics, but is less important for conventional applications such as indirect immunofluorescence. This review provides a broad integrative discussion of fluorescence microscopy with selected applications in immunology.  相似文献   

18.
Local fluorescence probes based on CdSe semiconductor nanocrystals were prepared and tested by recording scanning near‐field optical microscopy (SNOM) images of calibration samples and fluorescence resonance energy transfer SNOM (FRET SNOM) images of acceptor dye molecules inhomogeneously deposited onto a glass substrate. Thousands of nanocrystals contribute to the signal when this probe is used as a local fluorescence source while only tens of those (the most apical) are involved in imaging for the FRET SNOM operation mode. The dip‐coating method used to make the probe enables diminishing the number of active fluorescent nanocrystals easily. Prospects to realize FRET SNOM based on a single fluorescence centre using such an approach are briefly described.  相似文献   

19.
We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1?μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.  相似文献   

20.
Multiple frequency fluorescence lifetime imaging microscopy   总被引:3,自引:0,他引:3  
The experimental configuration and the computational algorithms for performing multiple frequency fluorescence lifetime imaging microscopy (mfFLIM) are described. The mfFLIM experimental set‐up enables the simultaneous homodyne detection of fluorescence emission modulated at a set of harmonic frequencies. This was achieved in practice by using monochromatic laser light as an excitation source modulated at a harmonic set of frequencies. A minimum of four frequencies were obtained by the use of two standing wave acousto‐optic modulators placed in series. Homodyne detection at each of these frequencies was performed simultaneously by mixing with matching harmonics present in the gain characteristics of a microchannel plate (MCP) image intensifier. These harmonics arise as a natural consequence of applying a high frequency sinusoidal voltage to the photocathode of the device, which switches the flow of photoelectrons ‘on’ and ‘off’ as the sinus voltage swings from negative to positive. By changing the bias of the sinus it was possible to control the duration of the ‘on’ state of the intensifier relative to its ‘off’ state, enabling the amplitude of the higher harmonic content in the gain to be controlled. Relative modulation depths of 400% are theoretically possible from this form of square‐pulse modulation. A phase‐dependent integrated image is formed by the sum of the mixed frequencies on the phosphor of the MCP. Sampling this signal over a full period of the fundamental harmonic enables each harmonic to be resolved, provided that the Nyquist sampling criterion is satisfied for the highest harmonic component in the signal. At each frequency both the phase and modulation parameters can be estimated from a Fourier analysis of the data. These parameters enable the fractional populations and fluorescence lifetimes of individual components of a complex fluorescence decay to be resolved on a pixel‐by‐pixel basis using a non‐linear fit to the dispersion relationships. The fitting algorithms were tested on a simulated data set and were successful in disentangling two populations having 1 ns and 4 ns fluorescence lifetimes. Spatial invariance of the lifetimes was exploited to improve the accuracy significantly. Multiple frequency fluorescence lifetime imaging microscopy was then successfully applied to resolve the fluorescence lifetimes and fluorescence intensity contributions in a rhodamine dye mixture in solution, and green fluorescent protein variants co‐expressed in live cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号