首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 了解苹果干燥加工过程中毒死蜱残留的降解规律,为苹果干燥产品中农药残留风险的评估提供科学的依据。方法 以红富士苹果为研究对象,采用热风干燥、微波干燥、阳光干燥对苹果片进行了处理,毒死蜱的残留量使用高效液相质谱检测。同时,利用加工因子(PF)建立了毒死蜱的变化模型,分析了干燥过程中水分的扩散系数和苹果片的复水率。结果 毒死蜱在苹果干燥过程中的变化是动态的,它的变化复合动力学模型,微波干燥和阳光干燥对毒死蜱的去除率高于热风干燥。毒死蜱的残留量与干燥条件以及农药的理化性质相关。结论 在苹果的工业生产中,推荐采用微波和阳光干燥来处理苹果,以降低毒死蜱残留带来的食品安全风险。  相似文献   

2.
Multimedia fate model for hexachlorocyclohexane in Tianjin, China   总被引:11,自引:0,他引:11  
A level III fugacity model was applied to characterize the fate of gamma-HCH in Tianjin, China, before the 1990s when the contamination reached its maximum at steady state. Geometric means were used as model inputs. The concentrations of gamma-HCH in air, surface water, soil, sediment, crops, and fish as well as transfer fluxes across the interface between the compartments were derived under the assumption of steady state. The calculated concentrations were validated by independent data collected from the literature. There was generally good agreement between the estimated and the observed concentrations, and the differences were all less than 0.6 log units for air, water, soil, sediment, and fish and approximately 1 order of magnitude for crops. Around 97% of gamma-HCH accumulated in soil and sediment. Wastewater irrigation was not an important pathway for delivering gamma-HCH to soil as compared to the dominant source of agricultural application. Degradation and advective airflow carried much gamma-HCH out of the system. Sensitivities of the model estimates to input parameters were tested, and a coefficient of variation normalized sensitivity coefficient was defined for the test. The most influential parameters were degradation rates in sediment and soil, application rates, concentrations in wastewater, and adsorption coefficients. Monte Carlo simulation was conducted for model uncertainty analysis. The model was run 20 000 times using randomly generated data from predefined log-normal distribution density functions. All calculated concentrations and fluxes were log-normally distributed. The dispersions of the calculated and observed concentrations were compared in terms of coefficients of variation to distinguish between true variability and model uncertainty.  相似文献   

3.
Pesticides in the atmosphere across Canadian agricultural regions   总被引:1,自引:0,他引:1  
The Canadian Atmospheric Network for Currently Used Pesticides (CANCUP) was the first comprehensive, nationwide air surveillance study of pesticides in Canada. This paper presentsthe atmospheric occurrence and distribution of pesticides including organochlorine pesticides (OCPs), organophosphate pesticides (OPPs), acid herbicides (AHs), and neutral herbicides (NHs) during the spring to summer of 2004 and 2005 across agricultural regions in Canada. Atmospheric concentrations of pesticides varied within years and time periods, and regional characteristics were observed including the following: (i) highest air concentrations of several herbicides (e.g., mecoprop, triallate, and ethalfluralin) were found at Bratt's Lake, SK, a site in the Canadian Prairies; (ii) the west-coast site at Abbotsford, BC, had the maximum concentrations of diazinon; (iii) the fruit and vegetable growing region in Vineland, ON, showed highest levels for several insecticides including chlorpyrifos, endosulfan, and azinphos-methyl; (iv) high concentrations of atrazine and metolachlor were measured at St. Anicet, QC, a corn-growing region; (v) the Kensington site in PEI, Canada's largest potato-producing province, exhibited highest level of dimethoate. Analysis of particle- and gas-phase fractions of air samples revealed that most pesticides including OCPs, OPPs, and NHs exist mainly in the gas phase, while AHs exhibit more diversity in particle-gas partitioning behavior. This study also demonstrated that stirred up soil dust does not account for pesticides that are detected in the particle phase. The estimated dry and wet deposition fluxes indicate considerable atmospheric inputs for some current-use pesticides (CUPs). This data set represents the first measurements for many pesticides in the atmosphere, precipitation, and soil for given agricultural regions across Canada.  相似文献   

4.
The POPCYCLING-Baltic model, a non-steady-state multicompartmental mass balance model of long-term chemical fate in the Baltic Sea environment, is used to derive a quantitative understanding of the behavior of alpha- and gamma-hexachlorocyclohexane (HCH) from 1970 to 2000. The atmosphere is found to effectively distribute the HCHs within the Baltic Sea environment and beyond, resulting in relatively uniform concentrations in environmental compartments that do not directly receive emissions. This uniformity is the result of a large-scale redistribution of a relatively small fraction of the emitted HCHs from the agricultural systems in source areas to all other environmental compartments throughout the Baltic Sea region. The major fraction of the HCHs is degraded in the soils receiving the pesticide application. In areas where HCH-containing pesticides are used, HCHs evaporate from soils and water bodies and are advected away in the atmosphere. They are deposited to forests and water bodies when they reach remote regions. This redistribution is driven by the inclination of the HCHs to equalize their chemical potential within the environment, which is illustrated through the use of fugacity fractions. The model is believed to provide useful insight into the complex set of interactions that determine the overall fate of an environmental contaminant but which are inaccessible to measurements.  相似文献   

5.
Through its extensive use as a fuel oxygenate, methyl tert-butyl ether (MTBE) is found nearly ubiquitouslythroughout the environment. To better understand the environmental fate of MTBE, fugacity models are commonly used. However, models developed by the scientific community and by governmental bodies differ in their predictions of relative MTBE concentrations for relevant environmental compartments and of seasonal concentration variations; further, to date they have not considered the formation of transformation products. In this study, the sensitivity of predicted environmental concentrations of MTBE and its two major degradation products, tert-butyl formate (TBF) and tert-butyl alcohol (TBA), to all types of model input parameters is analyzed in a probabilistic sensitivity analysis. This analysis allowed for an assessment of the most influential parameters for predicting soil, water, and air concentrations and thereby provided insight into why previous modeling studies on MTBE differed. Further, the information from the sensitivity analysis was used to parametrize a multispecies transformation model for predicting European concentration levels of MTBE and, for the first time, TBF and TBA. Water and air concentrations of MTBE predicted with the transformation model were in good agreement with measurements of environmental samples. No studies are available on environmental TBF and TBA levels to compare with model predictions; however, the modeling results indicate that, in the water phase, TBA concentrations may reach appreciable levels. One major uncertainty identified regarding the prediction of TBA levels was the fraction of TBA formed from atmospheric MTBE and TBF.  相似文献   

6.
Arctic seawater concentrations of two currently used pesticides, endosulfan and gama-HCH, were collated from a variety of cruises undertaken throughout the 1990s up to 2000 for different regions of the Arctic Ocean. Surface seawater concentrations for alpha- and beta-endosulfan ranged from <0.1-8.8 (mean 2.3) pg/L and 0.1-7.8 (mean 1.5) pg/L, while gamma-HCH concentrations were approximately 100 fold higher than alpha-endosulfan, ranging between <0.70 and 894 (mean 250) pg/L. Geographical distributions for alpha-endosulfan revealed the highest concentrations in the western Arctic, specifically in the Bering and Chukchi Seas with lowest levels toward the central Arctic Ocean. In contrast, gamma-HCH revealed higher concentrations toward the central Arctic Ocean, with additional high concentrations in the coastal regions near Barrow, Alaska and the White Sea in northwest Russia, respectively. A fugacity approach was employed to assess the net direction of air-water transfer of these two pesticides, using coupled seawater and air concentrations. For alpha-endosulfan, water-air fugacity ratios (FR) were all <1 indicating net deposition to all regions of the Arctic Ocean, with the lowest values (0.1-0.2) evident in the Canadian Archipelago. Given the uncertainty in the temperature-adjusted Henry's Law constant (factor approximately10), it is plausible that equilibrium may have been reached for this compound in the western fringes of the Arctic Ocean where the highest water concentrations were observed. Similarly, FR values for gamma-HCH were generally <1 and in agreement  相似文献   

7.
A multimedia model has been developed to estimate the dynamics of semivolatile organic compounds (SOCs) in urban areas. The model is based on a Level III fugacity model of Mackay and consists of six compartments: air, surface water, sediment, soil, vegetation, and an organic film that coats impervious surfaces. The model was used to illustrate the effect of impervious surfaces in urban areas by parametrization for downtown, Toronto, Canada, and modification of the same area to simulate forested conditions. With illustrative emissions of PCB homologues to air, the model indicates that most chemicals are lost by advection, with the remainder undergoing air-to-surface (organic film or vegetation) transfer. Under urban conditions chemicals with Log[K(OA)] < 7.5 volatilize from the film into air where they are susceptible to advection and photolytic degradation. Chemicals with Log[K(OA)] > 7.5 are washed off the film to surface waters where they may undergo volatilization, advection, sedimentation, and degradation. Both loss mechanisms from the film increase the overall mobility of SOCs in the urban relative to the forested environment. In forested areas, vegetation more efficiently accumulates gas- and particle-phase SOCs and subsequently transfers them to surface soils, the greatest chemical reservoir, where they are relatively immobile.  相似文献   

8.
Surface seawater and marine boundary layer air samples were collected on the ice-breaker R/V Xuelong (Snow Dragon) from the East China Sea to the high Arctic (33.23-84.5° N) in July to September 2010 and have been analyzed for six current-use pesticides (CUPs): trifluralin, endosulfan, chlorothalonil, chlorpyrifos, dacthal, and dicofol. In all oceanic air samples, the six CUPs were detected, showing highest level (>100 pg/m(3)) in the Sea of Japan. Gaseous CUPs basically decreased from East Asia (between 36.6 and 45.1° N) toward Bering and Chukchi Seas. The dissolved CUPs in ocean water ranged widely from 相似文献   

9.
The physical and chemical environment influences children's exposures to pesticides in and around the home. Children's activities, which increase their potential for exposure especially during eating, have been captured in the Children's Dietary Intake Model (CDIM). In addition to the chemical exposure associated with the food itself, this model incorporates excess dietary exposures due to handling of food during consumption. To stochastically evaluate CDIM, distributions of measured, and in some cases estimated, model factors were determined from measurements of permethrin, chlorpyrifos, and diazinon derived from assembled databases and laboratory experiments. Using the distributions of these factors, Monte Carlo simulations were performed to obtain distributions of total dietary intake of pesticides. To target the sources of pesticide contamination that were influencing total dietary intake, each factor was evaluated. We found pesticide surface concentration to be highly influential. By excluding surface concentration, we were also able to determine the influence of the other factors based on the F-statistic. Transfer efficiencies, followed by pesticide residue in consumed foods and amount of food consumed, were the next most influential factors within the model. With these distributions for model inputs, CDIM has the potential to more accurately predict total dietary intake of a contaminant by a child.  相似文献   

10.
The global environmental fate model CliMoChem has been used to calculate concentrations of dichlorodiphenyltrichloroethane (DDT) and its degradation products in the environment. To this end, best available physicochemical properties of DDT have been assembled, and a realistic DDT emission scenario covering the period from 1940 to 2005 has been generated. Results from the model are temporally and geographically resolved concentrations of DDT, dichlorodiphenyldichloroethylene (DDE), and dichlorodiphenyldichloroethane (DDD) in various environmental media. To confirm model results with measurements, we have developed a method for a qualitative and quantitative comparison of model and measurements. The agreement between the model and measurements is good, especially in the temporal dimension, and in the soil and air compartments. Using estimated DDT emissions for the future, we predict environmental concentrations in the next 50 years. The results show that, if emissions continue at a low level, concentrations will decrease by a factor of 30 in temperate regions and by a factor of 100 in the Arctic, as compared to the concentrations in the 1960s and 1970s. In the tropics, levels decrease by a factor of 5 to 10, only. Whereas environmental concentrations and estimated future emissions are at steady state after about 10 years in temperate and tropical regions, this takes over 50 years in the Arctic.  相似文献   

11.
A dynamic model for uptake of pesticides in potatoes is presented and evaluated with measurements performed within a field trial in the region of Boyaca?, Colombia. The model takes into account the time between pesticide applications and harvest, the time between harvest and consumption, the amount of spray deposition on soil surface, mobility and degradation of pesticide in soil, diffusive uptake and persistence due to crop growth and metabolism in plant material, and loss due to food processing. Food processing steps included were cleaning, washing, storing, and cooking. Pesticide concentrations were measured periodically in soil and potato samples from the beginning of tuber formation until harvest. The model was able to predict the magnitude and temporal profile of the experimentally derived pesticide concentrations well, with all measurements falling within the 90% confidence interval. The fraction of chlorpyrifos applied on the field during plant cultivation that eventually is ingested by the consumer is on average 10(-4)-10(-7), depending on the time between pesticide application and ingestion and the processing step considered.  相似文献   

12.
On the basis of recently reported measurements of semivolatile organic compound (SOC) uptake in forest canopies, simple expressions are derived that allow the inclusion of a canopy compartment into existing non-steady-state multimedia fate models based on the fugacity approach. One such model is used to assess how the inclusion of the canopy compartment in the model affects the calculated overall behavior of SOCs with specific physical--chemical properties. The primary effect of the forest is an increase in the net atmospheric deposition to the terrestrial environment, reducing atmospheric concentrations and accordingly the extent of deposition to the agricultural and aquatic environments. This effect was most pronounced for chemicals with log KOA around 9-10 and log KAW -2 to -3; their average air concentrations during the growing season decreased by a factor of 5 when the canopy compartment was included. Concentration levels in virtually all compartments are decreased at the expense of increased concentrations in the forest soil. The effect of the forest lies not in a large capacity for these chemicals but in the efficiency of pumping the chemicals from the atmosphere to the forest soil, a storage reservoir with high capacity from which the chemicals can return to the atmosphere only with difficulty. Because of seasonal variability of canopy size and atmospheric stability, uptake into forests is higher during spring and summer than in winter. The model suggests that this may dampen temperature-driven seasonal fluctuations of air concentrations and in regions with large deciduous forests may lead to a temporary, yet notable dip in air concentrations during leaf development in spring. A sensitivity analysis revealed a strong effect of forest cover, forest composition, and degradation half-lives. A high degradation loss on the plant surface has the effect of preventing the saturation of the small plant reservoir and can cause very significant reductions in atmospheric concentrations of those SOCs for which uptake in the canopy is limited by the size of the reservoir.  相似文献   

13.
In this study, the volatilization of five pesticides applied to an artificial flooded paddy field was assessed using the theoretical profile shape (TPS) and the integrate horizontal flux (IHF) techniques. The dataset derived was utilized to improve the volatilization routine of the rice water quality (RICEWQ) model. The masses of pesticides ethoprophos, procymidone, metalaxyl, chlorpyrifos, and chlorpyrifos methyl volatilized from paddy water and their concentrations in paddy water were determined for a period of 6 d after application. The highest and lowest volatilization losses were observed for chlorpyrifos and metalaxyl, respectively, accounting for 3.3% and 0.03% of their initially applied amount. A rapid pesticide dissipation was evident in paddy water during the study period. The RICEWQ model was used to simulate the fate of pesticides in the artificial paddy system. The Kvolat, an empiric coefficient used by the model as an input parameter, was calculated for all pesticides through model calibration. RICEWQ simulated well the fate of pesticides in paddy water. A significant regression correlation between Henry's law constant (Hk) and Kvolat of the studied compounds was established which could facilitate the parametrization of the model for describing pesticide volatilization.  相似文献   

14.
Air-water exchange of polychlorinated biphenyls in the Delaware River   总被引:2,自引:0,他引:2  
The air-water exchange of polychlorinated biphenyls (PCBs) often results in net volatilization, which is thought to be the most important loss process for PCBs in many systems. Previous investigations of the air-water exchange of PCBs have been hampered by difficulties in treatment of the uncertainty in the calculation of air/water fugacity ratios. This work presents a new framework for the treatment of uncertainty, where uncertainty in physical constants is handled differently from random measurement uncertainty associated with random samples, and it further investigates the sorption of PCBs to colloids (dissolved organic carbon). Simultaneous measurements of PCBs in the air and water of five water quality management zones of the Delaware River were taken in 2002 in support of the total maximum daily load (TMDL) process. Gas-phase concentrations of IPCBs ranged from 110 to 1350 pg m(-3), while dissolved water concentrations were between 420 and 1650 pg L(-1). Shallow slopes of log Koc vs. log Kow plots indicated a colloidal contribution to the apparent dissolved-phase concentrations, such that a three-phase partitioning model was applied. Fugacity ratios for individual congeners were calculated under the most conservative assumptions, and their values (log-transformed) were examined via a single-sample T-test to determine whether they were significantly less than 1 at the 95% confidence level. This method demonstrated that air-water exchange resulted in net volatilization in all zones over all cruises for all but seven high molecular weight congeners. Calculated net fluxes ranged from +360 to +3000 ng m(-2) d(-1) for sigma PCBs. The colloidal correction decreased the volatilization flux of sigma PCBs by approximately 30%. The decachlorinated congener (PCB 209), exhibited unusually high concentrations in the suspended solids, especially in the southern portions of the river, indicating that there is a distinct source of PCB 209 in the Delaware River.  相似文献   

15.
It has been shown that steady-state multimedia models (level III fugacity models) lead to a substantial underestimate of air concentrations for chemicals with a low Henry's law constant (H < 0.01 Pa m-3 mol-1) because they assume a steady rain. This can lead to substantial errors, especially when multimedia models are used to estimate the spatial range or inhalation exposure. A dynamic model of pollutant fate is developed for conditions of intermittent rainfall to calculate the time profile of pollutant concentrations in different environmental compartments. The model utilizes a new, mathematically efficient approach to dynamic multimedia fate modeling that is based on the convolution of solutions to the initial conditions problem. For the first time, this approach is applied to intermittent conditions. The investigation indicates that the time-averaged pollutant concentrations under intermittent rainfall can be approximated by the appropriately weighted average of steady-state concentrations under conditions with and without rainfall.  相似文献   

16.
Historic and current use pesticides (HUPs and CUPs), with respect to use in the United States and Canada, were identified in trans-Pacific and regional air masses at Mt. Bachelor Observatory (MBO), a remote high elevation mountain in Oregon's Cascade Range located in the United States, during the sampling period of April 2004 to May 2006 (n = 69), including NASA's INTEX-B campaign (spring 2006). Elevated hexachlorobenzene (HCB) and alpha-hexachlorocyclohexane (alpha-HCH) concentrations were measured during trans-Pacific atmospheric transport events at MBO, suggesting that Asia is an important source region for these HUPs. Regional atmospheric transport events at MBO resulted in elevated dacthal, endosulfan, metribuzin, triallate, trifluralin, and chlorpyrifos concentrations, with episodic increases in concentration during some spring application periods, suggesting that the Western U.S. is a significant source region for these CUPs. Endosulfan I, gamma-HCH, and dacthal concentrations were significantly positively correlated (p-value < 0.05) with increased air mass time in Western U.S. agricultural areas. Elevated gamma-HCH concentrations were measured at MBO during both trans-Pacific and regional atmospheric transport events, including regional fire events. In addition to gamma-HCH, elevated sigmachlordane, alpha-HCH, HCB, and trifluralin concentrations were associated with fires in Western North America due to revolatilization of these pesticides from soils and vegetation. Trans-chlordane/cis-chlordane and alpha-HCH/gamma-HCH ratios were calculated and may be used to distinguish between free tropospheric and regional and/or Asian air masses.  相似文献   

17.
影响农残快检仪抑制率测定结果的因素   总被引:1,自引:0,他引:1  
考察不同因素对农残快检仪抑制率的影响。以GDYN-1096SC型农药残留快检仪为例,考察快检仪的重复性、稳定性、吸光度线性、通道一致性4个技术参数,并使用乙酰胆碱酯酶和小麦酯酶两种来源不同的酶,分别对甲胺磷、对硫磷、敌敌畏、氧化乐果、毒死蜱、甲萘威、灭多威、克百威8种农药进行检测。结果显示:农残快检仪各技术参数在满足测试要求的情况下,不影响抑制率;来源不同的酶试剂是影响快检仪抑制率测定结果的主要因素。  相似文献   

18.
目的建立了一种以黄瓜为基质的毒死蜱标准物质的制作方法。方法黄瓜样品经研磨、加标、冷冻干燥、磨粉、混匀、真空包装后,用GB 23200.113-2018检验样品的均匀性、稳定性,并联合多家实验室对黄瓜冻干粉中毒死蜱基质样品定值,同时分析样品的不确定度。结果F-检验法和t-检验法表明在95%置信区间内,样品均匀性、短期稳定性和长期稳定性均达到标准物质要求。采用格拉布斯和柯克伦检验对定值结果进行异常值检验,并对结果进行不确定度评估,样品定值为1.78 mg/kg,不确定度为0.12 mg/kg。结论该样品具有良好的均匀性、稳定性,可作为蔬菜中毒死蜱含量检测使用的标准物质。  相似文献   

19.
Local and regional atmospheric transport of current-use pesticides is an important source of these compounds to nontarget plants and ecosystems. Current-use pesticides were measured at urban, rural, and suburban sites in eastern Iowa during 2000-2002. The most detected compounds were hexachlorobenzene and trifluralin, which were found in 89% and 78% of the samples, respectively. As expected, many pesticides showed a strong seasonal trend with the most detections and highest concentrations occurring during the spring and early summer. The average detected concentrations of five heavily used herbicides were 0.52 ng/ m3 for trifluralin, 4.6 ng/m3 for acetochlor, 2.3 ng/m3 for metolachlor, 1.1 ng/m3 for alachlor, 1.7 ng/m3 for pendimethalin, and 1.2 ng/m3 for atrazine. The most frequently detected insecticides were phorate and chlorpyrifos, which were found in 20% and 19% of the samples, respectively. The average phorate and chlorpyrifos concentrations were 25 ng/m3 and 1.0 ng/m3, respectively. The maximum phorate concentration, the highest measured for all pesticides, was 91.2 ng/m3. The most frequently detected current-use fungicides were chloroneb and etridiazole, which were found in 14% and 10% of the samples, respectively.  相似文献   

20.
Volatilization of pesticides from crops in the field can be an important emission pathway. In a field experiment with characterization of meteorological conditions, the pesticides chlorpyrifos and fenpropimorph were sprayed onto a potato crop, after which concentrations in the air and on/in the plants were measured. Rates of volatilization were estimated with the aerodynamic profile (ADP), energy balance (EB), relaxed eddy accumulation (REA), and plume dispersion (PD) methods. The volatilization rates obtained with the ADP and EB methods were similar, while some rates obtained with the REA and PD methods in the initial period were lower. Cumulative volatilization of chlorpyrifos during daylight hours (ADP and EB methods) was estimated to be about 65% of the dosage. By far the majority of this volatilization occurred in the first few days. Competing processes at the plant surface had a considerable effect on the dissipation of fenpropimorph, so cumulative volatilization during daylight hours was estimated to be only 7% of the dosage. Plant surface residues were higher than would correspond with the volatilization rate, indicating that penetration into the leaves had occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号