首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ryanodine receptor (RyR)/Ca2+ release channel is an essential component of excitation-contraction coupling in striated muscle cells. To study the function and regulation of the Ca2+ release channel, we tested the effect of caffeine on the full-length and carboxyl-terminal portion of skeletal muscle RyR expressed in a Chinese hamster ovary (CHO) cell line. Caffeine induced openings of the full length RyR channels in a concentration-dependent manner, but it had no effect on the carboxyl-terminal RyR channels. CHO cells expressing the carboxyl-terminal RyR proteins displayed spontaneous changes of intracellular [Ca2+]. Unlike the native RyR channels in muscle cells, which display localized Ca2+ release events (i.e., "Ca2+ sparks" in cardiac muscle and "local release events" in skeletal muscle), CHO cells expressing the full length RyR proteins did not exhibit detectable spontaneous or caffeine-induced local Ca2+ release events. Our data suggest that the binding site for caffeine is likely to reside within the amino-terminal portion of RyR, and the localized Ca2+ release events observed in muscle cells may involve gating of a group of Ca2+ release channels and/or interaction of RyR with muscle-specific proteins.  相似文献   

2.
We studied the Ca2+ movement induced by activation of alpha1A-, alpha1B- and alpha1D-adrenoceptor subtypes in transfected HEK-293 cells with the fura-2 probe. All these alpha1-AR subtypes induced both Ca2+ release and Ca2+ entry. The effect on Ca2+ release in alpha1b transfected HEK-293 cells was bigger than that in alpha1a and alpha1d transfected HEK-293 cells, and the effects on Ca2+ entry were the same in alpha1a, alpha1b and alpha1d transfected HEK-293 cells. The Ca2+ entry was inhibited by 1 mM NiSO4, but not by nifedipine. Cyclopiazonic acid (CPA) produced a biphasic Ca2+ signal response in Ca2+ medium, and only induced a transient response in Ca2+-free medium. After depletion of CPA-sensitive Ca2+ pool by 10 microM CPA in Ca2+-free medium, 10 microM adrenaline (Adr) still transiently increased [Ca2+]i in three different alpha1-adrenoceptor subtype transfected HEK-293 cells. However, after depletion of adrenaline-sensitive Ca2+ pool by 10 microM Adr, CPA transiently elevated [Ca2+]i only in alpha1a and alpha1d transfected HEK-293 cells, not in alpha1b transfected HEK-293 cells. U73122, a phospholipase C (PLC) inhibitor, inhibited both Ca2+ release and Ca2+ entry induced by activation of alpha1A alpha1B and alpha1D subtypes in transfected HEK-293 cells. These results suggest that HEK-293 cell line contains two functionally separate intracellular Ca2+ pools, CPA-sensitive and Adr-sensitive pools. Activation of alpha1B-AR stimulates Ca2+ release from both CPA-sensitive and Adr-sensitive Ca2+ pools. Alpha1A and alpha1D subtypes induce Ca2+ release only from Adr-sensitive Ca2+ pool.  相似文献   

3.
Formation of inositol 1,4,5-trisphosphate (IP3) by phospholipase C (PLC) with subsequent release of Ca2+ from intracellular stores, is one of the major Ca2+ signalling pathways triggered by G-protein-coupled receptors (GPCRs). However, in a large number of cellular systems, Ca2+ mobilization by GPCRs apparently occurs independently of the PLC-IP3 pathway, mediated by an as yet unknown mechanism. The present study investigated whether sphingosine kinase activation, leading to production of sphingosine-1-phosphate (SPP), is involved in GPCR-mediated Ca2+ signalling as proposed for platelet-derived growth factor and FcepsilonRI antigen receptors. Inhibition of sphingosine kinase by DL-threo-dihydrosphingosine and N,N-dimethylsphingosine markedly inhibited [Ca2+]i increases elicited by m2 and m3 muscarinic acetylcholine receptors (mAChRs) expressed in HEK-293 cells without affecting mAChR-induced PLC stimulation. Activation of mAChRs rapidly and transiently stimulated production of SPP in HEK-293 cells. Finally, intracellular injection of SPP induced a rapid and transient Ca2+ mobilization in HEK-293 cells which was not antagonized by heparin. We conclude that mAChRs utilize the sphingosine kinase-SPP pathway in addition to PLC-IP3 to mediate Ca2+ mobilization. As Ca2+ signalling by various, but not all, GPCRs in different cell types was likewise attenuated by the sphingosine kinase inhibitors, we suggest a general role for sphingosine kinase, besides PLC, in mediation of GPCR-induced Ca2+ signalling.  相似文献   

4.
BACKGROUND: A defect in the ryanodine (Ry1) receptor Ca2+ channel has been implicated as one of the possible underlying causes of malignant hyperthermia (MH), a pharmacogenetic disorder characterized by sustained muscle contracture. The disease is triggered by common halogenated anesthetics and skeletal muscle relaxants, such as succinylcholine. This study tested whether the functional properties of the Ry1 receptor Ca2+ channel are affected by chlorocresol, a preservative added to a commercial preparation of succinylcholine (Midarine) and other parenteral compounds. METHODS: In vitro contracture testing was carried out on muscle biopsies from malignant hyperthermia-susceptible (MHS) and -negative (MHN) individual according to the protocol of the European MH group. Ca2+ flux studies on isolated rabbit sarcoplasmic reticulum fractions were measured spectrophotometrically by following the A710-790 of the Ca2+ indicator antipyrylazo III. RESULTS: Chlorocresol causes muscle contracture in MHS muscles at a concentration of 25-50 microM and potentiates the caffeine contracture response in human MHS muscles. Sub-threshold (20 microM) concentrations of chlorocresol increase both the Kd and the Vmax of caffeine-induced Ca2+ release from isolated rabbit terminal cisternae. CONCLUSIONS: These data suggest that, in muscle from MHS individuals, the enhanced Ca2+ released from the sarcoplasmic reticulum may not be due to the effect of succinylcholine alone but rather to the action of the preservative chlorocresol added to the drug.  相似文献   

5.
Mutations in presenilin 1 (PS-1) and presenilin 2 (PS-2) have been linked to early onset, autosomal dominant Alzheimer's disease. Neither the normal function(s) of the presenilins nor their role(s) in mediating the devastating neurological and pathological changes associated with Alzheimer's Disease, however, are well understood. The results of the experiments described here demonstrate that expression of wild-type PS-1 or PS-2 increases outward K+ current densities in HEK-293 cells relative to untransfected or mock-transfected cells. Western blot analysis reveals that there is a marked increase in full-length, rather than processed, presenilins in transiently transfected HEK-293 cells, suggesting that full-length PS-1 (or PS-2) underlies the observed increases in outward K+ current densities. Consistent with this hypothesis, EXpression of an N-terminal proteolytic fragment of PS-1 is without effects on the membrane properties of HEK-293 cells. Mean outward K+ current densities are also shown to be increased in HEK-293 cells expressing the exon 9 splice site PS-1 mutation (deltaex9/PS-1), a mutant that does not undergo proteolytic processing. In HEK- 293 cells transiently transfected with a missense (G209V) PS-1 mutant, however, mean K+ current densities were not significantly different from controls. Expression of wild-type PS-1 in neonatal rat ventricular myocytes also results in increased outward K+ currents, whereas no detectable effects on membrane currents were seen in PS-1-transfected COS-7 cells. These results suggest that the presenilins do not actually form K+ channels, but rather that these proteins upregulate functional K+ channel expression either directly by associating with K+ channel pore-forming subunits or indirectly by increasing the synthesis, assembly, and/or transport of these subunits. The observation that PS-1 and PS-2 are highly expressed in neurons, localized to the endoplasmic reticulum, suggests that the presenilins could regulate neuronal K+ channel expression; mutations in PS-1/PS-2 would then be expected to result in profound changes in neuronal excitability and contribute to the cognitive decline commonly associated with Alzheimer's Disease.  相似文献   

6.
Single-channel analysis of sarcoplasmic reticulum vesicles prepared from diaphragm muscle, which contains both RyR1 and RyR3 isoforms, revealed the presence of two functionally distinct ryanodine receptor calcium release channels. In addition to channels with properties typical of RyR1 channels, a second population of ryanodine-sensitive channels with properties distinct from those of RyR1 channels was observed. The novel channels displayed close-to-zero open-probability at nanomolar Ca2+ concentrations in the presence of 1 mM ATP, but were shifted to the open conformation by increasing Ca2+ to micromolar levels and were not inhibited at higher Ca2+ concentrations. These novel channels were sensitive to the stimulatory effects of cyclic adenosine 5'-diphosphoribose (cADPR). Detection of this second population of RyR channels in lipid bilayers was always associated with the presence of the RyR3 isoform in muscle preparations used for single-channel measurements and was abrogated by the knockout of the RyR3 gene in mice. Based on the above, we associated the novel population of channels with the RyR3 isoform of Ca2+ release channels. The functional properties of the RyR3 channels are in agreement with a potential qualitative contribution of this channel to Ca2+ release in skeletal muscle and in other tissues.  相似文献   

7.
Malignant hyperthermia (MH) is a potentially fatal, inherited skeletal muscle disorder in humans and pigs that is caused by abnormal regulation of Ca2+ release from the sarcoplasmic reticulum (SR). MH in pigs is associated with a single mutation (Arg615Cys) in the SR ryanodine receptor (RyR) Ca2+ release channel. The way in which this mutation leads to excessive Ca2+ release is not known and is examined here. Single RyR channels from normal and MH-susceptible (MHS) pigs were examined in artificial lipid bilayers. High cytoplasmic (cis) concentrations of either Ca2+ or Mg2+ (>100 microM) inhibited channel opening less in MHS RyRs than in normal RyRs. This difference was more prominent at lower ionic strength (100 mM versus 250 mM). In 100 mM cis Cs+, half-maximum inhibition of activity occurred at approximately 100 microM Mg2+ in normal RyRs and at approximately 300 microM Mg2+ in MHS RyRs, with an average Hill coefficient of approximately 2 in both cases. The level of Mg2+ inhibition was not appreciably different in the presence of either 1 or 50 microM activating Ca2+, showing that it was not substantially influenced by competition between Mg2+ and Ca2+ for the Ca2+ activation site. Even though the absolute inhibitory levels varied widely between channels and conditions, the inhibitory effects of Ca2+ and Mg2+ were virtually identical for the same conditions in any given channel, indicating that the two cations act at the same low-affinity inhibitory site. It seems likely that at the cytoplasmic [Mg2+] in vivo (approximately 1 mM), this Ca2+/Mg2+-inhibitory site will be close to fully saturated with Mg2+ in normal RyRs, but less fully saturated in MHS RyRs. Therefore MHS RyRs should be more sensitive to any activating stimulus, which would readily account for the development of an MH episode.  相似文献   

8.
Excitation-contraction coupling in skeletal muscle requires the release of intracellular calcium ions (Ca2+) through ryanodine receptor (RyR1) channels in the sarcoplasmic reticulum. Half of the RyR1 channels are activated by voltage-dependent Ca2+ channels in the plasma membrane. In planar lipid bilayers, RyR1 channels exhibited simultaneous openings and closings, termed "coupled gating." Addition of the channel accessory protein FKBP12 induced coupled gating, and removal of FKBP12 uncoupled channels. Coupled gating provides a mechanism by which RyR1 channels that are not associated with voltage-dependent Ca2+ channels can be regulated.  相似文献   

9.
The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer method. In the presence of caffeine and nanomolar cytosolic Ca2+ concentrations, lumenal-to-cytosolic Ca2+ fluxes >/=0.25 pA activated the channel. At the maximally activating cytosolic Ca2+ concentration of 4 microM, lumenal Ca2+ fluxes of 8 pA and greater caused a decline in channel activity. Lumenal Ca2+ fluxes primarily increased channel activity by increasing the duration of mean open times. Addition of the fast Ca2+-complexing buffer 1,2-bis(2-aminophenoxy)ethanetetraacetic acid (BAPTA) to the cytosolic side of the bilayer increased lumenal Ca2+-activated channel activities, suggesting that it lowered Ca2+ concentrations at cytosolic Ca2+-inactivating sites. Regulation of channel activities by lumenal Ca2+ could be also observed in the absence of caffeine and in the presence of 5 mM MgATP. These results suggest that lumenal Ca2+ can regulate cardiac Ca2+ release channel activity by passing through the open channel and binding to the channel's cytosolic Ca2+ activation and inactivation sites.  相似文献   

10.
9-Methyl-7-bromoeudistomin D (MBED), the most powerful caffeine-like releaser of Ca2+ from skeletal muscle sarcoplasmic reticulum, induced Ca2+ release from the cardiac sarcoplasmic reticulum. MBED (5 microM) and caffeine (1 mM) caused rapid Ca2+ release from the fragmented cardiac sarcoplasmic reticulum in a Ca2+ electrode experiment. [3H]MBED bound to a single class of high-affinity binding sites in cardiac sarcoplasmic reticulum membranes (Kd = 150 nM). These results suggest that MBED binds to a specific binding site on cardiac sarcoplasmic reticulum membranes to induce Ca2+ release from the cardiac sarcoplasmic reticulum. Thus, MBED is a useful probe for characterizing Ca2+ release the channels not only in skeletal sarcoplasmic reticulum but also in cardiac sarcoplasmic reticulum.  相似文献   

11.
Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ release was examined in neurons isolated from the mollusc Helix pomatia using Ca2+ indicator fura-2 and fluorescent digital-imaging microscopy technique. Extracellular application of caffeine caused a fast and pronounced augmentation of [Ca2+]i whose amplitude and kinetics differ in the centre of the cell and near its membrane. Mean values of caffeine-induced increase of [Ca2+]i were 0.97 +/- 0.11 microM at the periphery and 0.53 +/- 0.13 microM in the centre. The rates of rise and relaxation of caffeine-evoked [Ca2+]i transients were faster near the membrane. Pressure injection of inositol, 1,4,5-trisphosphate into the same neurons produced an abrupt and significant increase of [Ca2+]i in the centre (mean value of inositol 1,4,5-trisphosphate-induced elevation = 0.55 +/- 0.11 microM) while the response was smaller or even absent near the cellular membrane. Inositol 1,4,5-trisphosphate- and caffeine-induced Ca2+ transients did not affect each other. The data obtained indicate that in snail neurons these two calcium pools are not overlapping and at least some part of the caffeine-sensitive store is located close to the cellular membrane and that the inositol 1,4,5-trisphosphate-sensitive one is located in the centre of the cell.  相似文献   

12.
We investigated how Ca2+-sensitive transient outward current, Ito(Ca), is activated in rabbit ventricular myocytes in the presence of intracellular Na+ (Na+i) using the whole-cell patch-clamp technique at 36 degreesC. In cells dialysed with Na+-free solutions, the application of nicardipine (5 microM) to block L-type Ca2+ current (ICa) completely inhibited Ito(Ca). In cells dialysed with a [Na+]i>/=5 mM, however, Ito(Ca) could be observed after blockade of ICa, indicating the activity of an ICa-independent component. The amplitude of ICa-independent Ito(Ca) increased with voltage in a [Na+]i-dependent manner. The block of Ca2+ release from the sarcoplasmic reticulum by caffeine, ryanodine or thapsigargin blocked ICa-independent Ito(Ca). In Ca2+-free bath solution Ito(Ca) was completely abolished. The application of 2 mM Ni2+ or the newly synthesized compound KBR7943, a selective blocker of the reverse mode of Na+/Ca2+ exchange, or perfusion with pipette solution containing XIP (10 microM), a selective blocker of the exchanger, blocked ICa-independent Ito(Ca). From these results we conclude that, in the presence of Na+i, Ito(Ca) can be activated via Ca2+-induced Ca2+ release triggered by Na+/Ca2+ exchange operating in the reverse mode after blockade of ICa.  相似文献   

13.
The sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene encodes both SERCA2a, the cardiac sarcoplasmic reticulum Ca2+ pump, and SERCA2b, which is expressed in all tissues. To gain a better understanding of the physiological functions of SERCA2, we used gene targeting to develop a mouse in which the promoter and 5' end of the gene were eliminated. Mating of heterozygous mutant mice yielded wild-type and heterozygous offspring; homozygous mutants were not observed. RNase protection, Western blotting, and biochemical analysis of heart samples showed that SERCA2 mRNA was reduced by approximately 45% in heterozygous mutant hearts and that SERCA2 protein and maximal velocity of Ca2+ uptake into the sarcoplasmic reticulum were reduced by approximately 35%. Measurements of cardiovascular performance via transducers in the left ventricle and right femoral artery of the anesthetized mouse revealed reductions in mean arterial pressure, systolic ventricular pressure, and the absolute values of both positive and negative dP/dt in heterozygous mutants. These results demonstrate that two functional copies of the SERCA2 gene are required to maintain normal levels of SERCA2 mRNA, protein, and Ca2+ sequestering activity, and that the deficit in Ca2+ sequestering activity due to the loss of one copy of the SERCA2 gene impairs cardiac contractility and relaxation.  相似文献   

14.
The effects of nitric oxide on the activities of thapsigargin-sensitive sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Ca2+ uptake by sarcoplasmic reticulum (SR) membranes prepared from white skeletal muscle of rabbit femoral muscle were studied. Pretreatment of the SR preparations with nitric oxide at concentrations of up to 250 microM for 1 min decreased the SERCA activity concentration dependently, and also decreased their Ca2+ uptake. Both these effects of nitric oxide were reversible. Inhibitors of guanylyl cyclase and protein kinase G (PKG) had no significant effect on the nitric oxide-induced inhibitions of SERCA and Ca2+ uptake. Moreover, dithiothreitol did not reverse the inhibitory effects of nitric oxide on SERCA and Ca2+ uptake. These findings suggest that nitric oxide inhibits SERCA, mainly SERCA 1, of rabbit femoral skeletal muscle by an action independent of the cyclic GMP-PKG system or oxidation of thiols, and probably by a direct action on SERCA protein.  相似文献   

15.
We investigated the effects of cytosolic Mg2+ on ryanodine receptor Ca2+ release channel (RyR) of bovine cardiac sarcoplasmic reticulum incorporated into planar lipid bilayers recording single channel activities. Channels were activated by > or = 0.1 microM Ca2+ in the cis solution. At constant Ca2+, application of Mg2+ (0.1-1 mM) to cis side decreased channel activity in a concentration-dependent manner. A half maximal blocking concentration (Kd) was 35 microM and a complete block was obtained at 1 mM. In the presence of 1 mM free Mg2+ in cis solution, the relation between the channel open probability (Po) and concentration of free Ca2+ in cis solution ([Ca2+]cis) shifted to the right, indicating the competition of Mg2+ and Ca2+. Blocking effects of Mg2+ on RyR were antagonized by increasing [Ca2+]cis > or = 0.1 mM. In the presence of 1 m Mg2+ and 1 mM Ca2+ in cis solution, the channel conductance was markedly depressed to approximately 400 pS (n = 7) from 603 +/- 40 pS (mean +/- S.D., n = 22) in the absence of Mg2+, indicating the flickering block. These results show that Mg2+ causes a direct inhibition of RyR in cardiac SR and this inhibition may be mediated through two different mechanisms. A competition of Mg2+ and Ca2+ at a Ca2+ sensitive site on the RyR and a flickery block of the open channel by Mg2+.  相似文献   

16.
Nitric oxide (NO) is a potent inhibitor of thrombin-induced increase in cytoplasmic free Ca2+ concentration and aggregation in platelets, but the precise mechanism of this inhibition is unclear. To measure Ca2+/Mn2+ influx in intact platelets and to monitor Ca2+ uptake into the stores in permeabilized platelets, fura-2 was used. In intact platelets, maximal capacitative Ca2+ and Mn2+ influx developed rapidly (within 30 s) after fast release of Ca2+ from the stores with thrombin (0.5 U/mL) or slowly (within 5 to 10 minutes) following passive Ca2+ leak caused by inhibition of sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) with 30 micromol/L 2,5-di-(tert-butyl)-1,4-benzohydroquinone (BHQ). NO (1 micromol/L) inhibited capacitative Ca2+ and Mn2+ influx independently of the time after thrombin application. In contrast, the effect of NO on BHQ-induced Ca2+ and Mn2+ influx was observed only during the first few minutes after BHQ application and completely disappeared when capacitative cation influx reached its maximum. In Ca2+-free medium, NO reduced the peak Ca2+ rise caused by thrombin and significantly promoted Ca2+ back-sequestration into the stores. Both effects disappeared in the presence of BHQ. Inhibition of guanylate cyclase with H-(1,2,4) oxadiazolo(4,3-a) quinoxallin-1-one (10 micromol/L) attenuated but did not prevent the effects of NO on cytoplasmic free Ca2+ concentration. Inhibition of Ca2+ uptake by mitochondria did not change the effects of NO. In permeabilized platelets, NO accelerated back-sequestration of Ca2+ into the stores after inositol-1,4,5-trisphosphate-induced Ca2+ release or after addition of Ca2+ (1 micromol/L) in the absence of inositol-1,4,5-trisphosphate. The effect of NO depended on the initial rate of Ca2+ uptake and on the concentration of ATP and was abolished by BHQ, indicating the direct involvement of SERCA. These data strongly support the hypothesis that NO inhibits store-operated cation influx in human platelets indirectly via acceleration of SERCA-dependent refilling of Ca2+ stores.  相似文献   

17.
Generally most intracellular Ca2+ is stored in the endoplasmic reticulum (ER) and mitochondria. Recently a mitochondrial Ca(2+)-induced Ca2+ release (mCICR) mechanism, unconnected with ryanodine receptors (RyR's), has been shown in tumour cells. The existence of a mitochondrial Ca2+ release mechanism in BAE cells was investigated using saponin-permeabilised BAE cells. When buffered intracellular solution were 'stepped' from 10 nM to 10 microM free Ca2+, the mitochondrial inhibitors CN (2 mM), FCCP (1 microM), and RR (20 microM) significantly reduced total CICR by approximately 25%. The ER Ca(2+)-ATPase inhibitor thapsigargin (100 nM) had no effect. Furthermore, cyclosporin A (200 nM), an inhibitor of the mitochondrial permeability transition pore (PTP), abolished total CICR. Therefore, the novel ryanodine-caffeine insensitive CICR mechanism previously reported in BAE cells involves mitochondrial Ca2 release. It is proposed that in BAE cells, mCICR occurs via the mitochondrial PTP and may be physiologically important in endothelial cell Ca2+ signalling.  相似文献   

18.
In this work, we explored the relationship between the freely exchangeable Ca2+ (FECa2+) in the dense tubules (DT) and the sarco(endo)plasmic reticulum (SER) Ca2+-ATPase (SERCA) in circulating human platelets and examined the relationship between blood pressure (BP) and these platelet parameters. Studying platelets from 32 healthy men, we showed that the maximal reaction velocity (Vmax) of the SERCA significantly correlated with FECa2+ in the DT and with the protein expressions of SERCA 2 and 3. BP positively correlated with both the Vmax of the SERCA (r=.462, P=.010) and the FECa2+ sequestered in the DT (r=.492, P=.005). The relationships between these platelet Ca2+ parameters and BP were in part confounded by increased levels of serum triglycerides and diminished HDL cholesterol with a higher BP. No correlation was observed between the resting cytosolic Ca2+ and BP. Collectively, these findings indicate that (1) an increase in the cellular Ca2+ load in platelets is expressed by a higher activity of the SERCA and an increase in the expressions of SERCA 2 and 3 proteins, coupled with an increase in the FECa2+ in the DT, and (2) a higher BP is associated with an increase in platelet Ca2+ load in human beings, expressed by a rise in the FECa2+ in the DT and the upregulation of SERCA activity.  相似文献   

19.
BACKGROUND: The direct effect of halothane on vascular smooth muscle is mediated in part via its effects on the sarcoplasmic reticulum (SR). Little information is available concerning the effects of other volatile anesthetics including isoflurane and sevoflurane, whose vascular effects differ from those of halothane. The aim of the present study was to compare the effects of halothane, isoflurane and sevoflurane on the SR by testing the contraction induced by caffeine in vascular smooth muscle. METHODS: Rings without endothelium from isolated canine mesenteric artery were mounted in physiological saline solution (PSS) for isometric tension recording. After complete depletion of Ca2+ from the SR by adding 35 mM caffeine, the rings were exposed to normal Ca2+ containing PSS (Ca2+ loading), to Ca(2+)-free PSS for 10 min, and then to 15 mM caffeine to induce contraction. Anesthetics were administered during Ca2+ loading, the Ca(2+)-free phase and simultaneously with caffeine administration. RESULTS: Halothane (0.5-2%) attenuated the caffeine-induced contraction of canine mesenteric artery when administered during Ca2+ loading in the SR (P < 0.001), whereas isoflurane and sevoflurane (1-4%) failed to affect the contraction. When given simultaneously with caffeine, halothane (1-2%) potentiated the caffeine-induced contraction (P < 0.05), but isoflurane and sevoflurane had no effect. When given before caffeine administration, halothane (0.5-2%), isoflurane (2-4%) and sevoflurane (4%) all potentiated the caffeine-induced contraction (P < 0.05). CONCLUSION: It has been shown that halothane not only potentiates caffeine-induced Ca2+ release from the SR, but also induces contraction by releasing Ca2+ from the SR. We conclude that halothane decreases Ca2+ accumulation in the SR while exerting facilitative and additive effects on caffeine-induced Ca2+ release from the SR when applied before caffeine administration and simultaneously with caffeine, respectively, whereas isoflurane and sevoflurane lack both the ability to decrease Ca2+ accumulation and an additive effect on caffeine-induced Ca2+ release from the SR, but are able to facilitate Ca2+ release by caffeine.  相似文献   

20.
The presence and physiological role of Ca2+-induced Ca2+ release (CICR) in nonmuscle excitable cells has been investigated only indirectly through measurements of cytosolic [Ca2+] ([Ca2+]c). Using targeted aequorin, we have directly monitored [Ca2+] changes inside the ER ([Ca2+]ER) in bovine adrenal chromaffin cells. Ca2+ entry induced by cell depolarization triggered a transient Ca2+ release from the ER that was highly dependent on [Ca2+]ER and sensitized by low concentrations of caffeine. Caffeine-induced Ca2+ release was quantal in nature due to modulation by [Ca2+]ER. Whereas caffeine released essentially all the Ca2+ from the ER, inositol 1,4, 5-trisphosphate (InsP3)- producing agonists released only 60-80%. Both InsP3 and caffeine emptied completely the ER in digitonin-permeabilized cells whereas cyclic ADP-ribose had no effect. Ryanodine induced permanent emptying of the Ca2+ stores in a use-dependent manner after activation by caffeine. Fast confocal [Ca2+]c measurements showed that the wave of [Ca2+]c induced by 100-ms depolarizing pulses in voltage-clamped cells was delayed and reduced in intensity in ryanodine-treated cells. Our results indicate that the ER of chromaffin cells behaves mostly as a single homogeneous thapsigargin-sensitive Ca2+ pool that can release Ca2+ both via InsP3 receptors or CICR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号