首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Fatigue crack growth (FCG) behaviour and its characteristics following tensile overloads were investigated for AISI 304 stainless steel in three different atmospheres; namely dry argon, moist air and hydrogen. The FCG tests were performed by MTS 810 servohydraulic machine. CT specimens were used for the tests and crack closure measurements were made using an extensometer. FCG rates of 304 stainless steel at both dry argon and moist air atmospheres have shown almost the same behaviour. In other words, the effect of moisture on FCG of this material is very small. However, in a hydrogen atmosphere, the material showed considerably higher crack growth rate in all regimes. In general, for all environments, the initial effect of overloads was to accelerate the FCG rate for a short distance (less than a mm) after which retardation occurred for a considerable amount of time. The main causes for retardation were found as crack blunting and a long reinitiation period for the fatigue crack. Regarding the environmental effect, the overload retardation was lowest in a hydrogen atmosphere. This low degree of retardation was explained by a hydrogen embrittlement mechanism. In a general sense, hydrogen may cause a different crack closure mechanism and hydrogen induced crack closure has come in to the picture. Scanning electron microscope and light microscope examinations agreed well with the above results.  相似文献   

2.
The austenite γ (fcc) matrix of 304 LN stainless steel transforms readily to martensites (hcp) and ′ (bcc) on deformation. The formation and nucleation mechanism of deformation induced martensite (DIM) during tensile deformation of 304 LN stainless steel has been studied at various strain rates in room temperature. It is investigated that the enhancement of strain rates during tensile deformation promotes the early formation of DIM, while suppressing its saturation value at fracture. Extensive transmission electron microscopy (TEM) studies showed more than one nucleation site for martensite transformation and the transformation mechanisms were observed to be γ (fcc) →  (hcp), γ (fcc) → ′ (bcc) and γ (fcc) →  (hcp) → ′ (bcc).  相似文献   

3.
The paper presents the results of an experimental and numerical study on the fatigue behaviour of cruciform load carrying joints made from the duplex stainless steel and failing from the weld root through the weld metal. Fatigue crack growth (FCG) data, obtained in specimens of the weld metal, are presented, as well as threshold data, both obtained for R= 0 and 0.5. The influence of stress ratio is discussed, and the FCGR results are compared with data for low carbon structural steels. S–N data were obtained in the joints, both for R= 0.05 and 0.5, and the fatigue cracking mechanisms were analysed in detail with the SEM. It was found that the cracks propagated very early in the lifetime of the joints, under mixed mode conditions (I + II), but the mode I component was found to be predominant over mode II. The geometries of the cracks were defined in detail from measurements taken in the fracture surfaces. A 2D FE analysis was carried out for the mixed mode inclined cracks obtained at the weld root, and the J‐integral formulations were obtained as a function of crack length and crack propagation angle. The values of the crack propagation angle, θi, were obtained for the Jmax conditions, and it was found that, in the fatigue tests, the cracks propagated in directions very close to the predicted directions of maximum J. KI and KII formulations were obtained, and the KI data were compared with the formulations given in the PD6493 (BS7910) document, and some differences were found. A more general formulation for K under mixed mode conditions was derived. The derived K solutions were applied to predict the fatigue lives of the joints under crack propagation, and an extremely good agreement was found with the experimental results obtained in the fatigue tests.  相似文献   

4.
Attempts have been made to understand cyclic fracture behaviour of AISI 304LN stainless steel used for nuclear piping materials under load vis‐à‐vis displacement controlled fracture tests; the former closely simulate the seismic loading conditions. The load controlled tests indicate that a material fails in a limited number of cycles even when the load amplitudes are sufficiently below the maximum load in a monotonic JR test. The displacement controlled tests, on the other hand, show that the energy absorbing ability of a material gets severely reduced under cyclic loading conditions. The obtained results on standard laboratory specimens have been compared with similar available results on components in order to provide guidelines for maximum load bearing capability of engineering components under cyclic loading.  相似文献   

5.
Quantification, formation and nucleation micro-mechanisms of deformation induced martensite during low cycle fatigue behaviour of austenitic stainless steel have been investigated at various strain amplitudes tested at ambient temperature. The evolutionary deformation induced martensite has been quantified through magnetic measurement technique. It has been found that as strain amplitude increases, the volume fraction of deformation induced martensite increases. Extensive analytical transmission electron microscopy studies showed more than one nucleation site for martensitic transformation and the transformation micro-mechanisms have been observed to be: γ (fcc) → ? (hcp), γ (fcc) → α′ (bcc), γ (fcc) → deformation twins → α′ (bcc) and γ (fcc) → ? (hcp) → α′ (bcc).  相似文献   

6.
This paper describes an investigation into the fatigue threshold behaviour of two structural aluminium aerospace alloys, Al 2014‐T6 and Al 7075‐T6, when subjected to Mode II, Mode III and mixed Mode II/III loading. A unique four‐point shear loading test rig was employed to cyclically load sharply edge‐notched square bar specimens using an increasing load technique. The main aim of the work has been to generate Mode II–Mode III interaction diagrams for the fatigue threshold in each case, in order to facilitate improved design procedures for components fabricated from these alloys, which are susceptible to fatigue cracking under predominantly shear type loading. Aircraft are subjected to structural loads consisting of: pressurization, tension/compression, bending, shear and torsion, both on the ground and in flight. Representative fatigue fracture surfaces have been examined using scanning electron microscopy.  相似文献   

7.
316L不锈钢的高温疲劳蠕变行为和寿命预测   总被引:1,自引:0,他引:1  
进行316L不锈钢在单级和两级载荷作用下的高温疲劳蠕变试验,研究了载荷历程效应对材料行为的影响.在已有统一的疲劳蠕变损伤演化模型基础上,得到了316L高温单级载荷作用下非线性损伤演化曲线.同时,建立了一种耦合载荷历程效应的多级疲劳蠕变载荷作用下的材料破坏准则.基于该破坏准则,结合材料的非线性损伤模型对316L不锈钢高温两级载荷作用下的疲劳蠕变寿命进行了预测,预测结果与试验数据符合得比较好.  相似文献   

8.
ABSTRACT Fatigue crack growth of fibre reinforced metal laminates (FRMLs) under constant and variable amplitude loading was studied through analysis and experiments. The distribution of the bridging stress along the crackline in centre‐cracked tension (CCT) specimen of FRMLs was modelled numerically, and the main factors affecting the bridging stress were identified. A test method for determining the delamination growth rates in a modified double cracked lap shear (DCLS) specimen was presented. Two models, one being fatigue‐mechanism‐based and the other phenomenological, were developed for predicting the fatigue life under constant amplitude loading. The fatigue behaviour, including crack growth and delamination growth, of glass fibre reinforced aluminium laminates (GLARE) under constant amplitude loading following a single overload was investigated experimentally, and the mechanisms for the effect of a single overload on the crack growth rates and the delamination growth rates were identified. An equivalent closure model for predicting crack‐growth in FRMLs under variable amplitude loading and spectrum loading was presented. All the models presented in this paper were verified by applying to GLARE under constant amplitude loading and Mini‐transport aircraft wing structures (TWIST) load sequence. The predicted crack growth rates are in good agreement with test results.  相似文献   

9.
The aim of the present work is to clarify the fine granular area (FGA) formation mechanism in two steels (tempered 34CrNiMo6 and X10CrNiMoV12‐2‐2) causing grain refinement in the early state of fatigue for internal crack initiation and propagation in the very high cycle fatigue regime at pure tension‐compression loading (R = ?1) and for applied mean stresses (R ≠ ?1). Fatigue tests were performed with constant and variable amplitude at several R values using ultrasonic fatigue testing setups. Failed specimens were investigated using high‐resolution scanning electron microscopy and focused ion beam technique with special attention paid to the crack origin and the surrounding microstructure. To prove models for FGA formation proposed in literature, a numerical model to evaluate effective R values and contact stresses between the fracture surfaces depending on the crack length has been realised. The aim of these investigations is to estimate the influence of crack closure effects on FGA formation. FGA formation due to repeating contact of the fracture surfaces according to the model postulated by Hong et al correlates well with the findings for numerical simulations.  相似文献   

10.
Based on experimental investigations using specimens with different grades of porosity, a significant influence of the material condition of die‐cast magnesium alloys on the accuracy of fatigue‐life estimation according to the local‐strain approach is verified if the data‐base is not related to the microstructure of the component. In order to address this transferability issue, a porosity‐depending formulation is proposed. Based on a sensitivity analysis, a simplified, empirical engineering approach has been derived that describes the effect of the inherent porosity on fatigue strength via the fatigue‐strength exponent b. Furthermore, it is shown that the degradation of the fatigue‐behaviour in chloride‐containing media is not simply determined by the external corrosive attack, but also influenced by inner defects competing with the environmental impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号