首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
通过原位聚合法制备HA/PEEK复合材料,利用X射线衍射仪、红外光谱仪、差示扫描量热仪、扫描电镜对PEEK、HA/PEEK复合材料进行表征。研究表明,基体PEEK的聚合过程受到一定的影响;HA颗粒在基体之中有着优异的分散性。将PEEK、HA/PEEK复合材料压模成型,通过拉伸试验和硬度测量检测材料的力学性能,结果表明,HA的加入对复合材料的力学性能产生较大的影响。  相似文献   

2.
Hydroxyapatite/poly(ethylene adipate)-co-poly(ethylene terephthalate) biomaterials (HAp/PEA-co-PET) have been prepared by ring opening polymerization (ROP) of cyclic oligo(ethylene adipate)-co-oligo(ethylene terephthalate) (C-OEA-co-C-OET) in the porous hydroxyapatite (HAp) scaffolds at 250 °C for 24 h under vacuum. The content of ROP-PEA-co-PET in the HAp/PEA-co-PET composite was about 20 wt% with the values of number average molecular weight $({\overline{M}_{{\rm n}}})$ and weight average molecular weight $({\overline{M}_{{\rm W}}})$ of 3380 and 7160 g/mol, respectively. Compressive strength and modulus of the HAp/PEA-co-PET composites were about 29 and 246 MPa, respectively. These mechanical properties were higher than those of the porous HAp templates and natural cancellous bone. In vitro bioactivity of the HAp/PEA-co-PET composites was studied by soaking in simulated body fluid (SBF) under the flowing system at the rate of 130 mL/day for 7, 14, 21 and 28 days. The formation of hydroxyapatite nanocrystals was observed on the composite surfaces through the consumption of calcium and phosphorus from the SBF solution, indicating the bioactivity of these HAp/PEA-co-PET composites. These results indicated the competency of HAp/PEA-co-PET composites for biomedical applications.  相似文献   

3.
Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Unfortunately, problems with adhesion, poor mechanical integrity, and incomplete bone ingrowth limit the use of many conventional hydroxyapatite surfaces. In this work, we have developed a novel technique to produce crystalline hydroxyapatite thin films involving pulsed laser deposition and postdeposition annealing. Hydroxyapatite films were deposited on Ti–6Al–4V alloy and Si (100) using pulsed laser deposition, and annealed within a high temperature X-ray diffraction system. The transformation from amorphous to crystalline hydroxyapatite was observed at 340 °C. Mechanical and adhesive properties were examined using nanoindentation and scratch adhesion testing, respectively. Nanohardness and Young's modulus values of 3.48 and 91.24 GPa were realized in unannealed hydroxyapatite films. Unannealed and 350 °C annealed hydroxyapatite films exhibited excellent adhesion to Ti–6Al–4V alloy substrates. We anticipate that the adhesion and biological properties of crystalline hydroxyapatite thin films may be enhanced by further consideration of deposition and annealing parameters.  相似文献   

4.
为避免芳香族聚氨酯在体内降解时产生有毒物质,选用生物相容性良好的脂肪族聚氨酯(PU)与生物活性的羟基磷灰石(HA)为原料,通过原位聚合法制备了脂肪族PU/HA组织工程用多孔支架,并采用SEM、IR和力学试验等方法对多孔支架的形貌和性能进行了表征,进一步研究了发泡剂(水)用量和HA含量对支架泡孔结构和力学强度的影响。结果表明,当发泡剂用量为1%~1.5%(质量分数)时制得的多孔PU/HA复合支架材料孔隙之间相互贯通,孔径范围分布在300~800μm,大孔壁上分布着孔径为50~200μm的小孔,孔隙率达80%以上。随HA含量增加,支架抗压强度和弹性模量显著上升。综合考虑HA的增强效果和组织工程支架的孔隙结构,本体系中HA的最佳添加量为40%(质量分数),发泡剂的最佳用量为1%(质量分数)。  相似文献   

5.
Porous hydroxyapatite/collagen (HAp/Col) composite is a promising biomaterial and a scaffold for bone tissue engineering. The effect of fibril formation of Col in the porous composite on bioresorbability and mechanical strength was investigated. The fibril formation, in mixing a self-organized HAp/Col nanocomposite and sodium phosphate buffer at a neutral condition, occurred during incubation at 37 °C, resulting in gelation of the mixture. The porous composites with and without the incubation were obtained by freeze-drying technique, in which macroscopic open pores were formed. The compressive strength of the porous composite with the incubation (34.1 ± 1.6 kPa) was significantly higher than that without the incubation (28.0 ± 3.3 kPa) due to the fibril formation of Col. The implantations of the porous composites treated with a dehydrothermal treatment in bone holes revealed that bioresorption was clearly depended on the fibril formation. The bioresorbability in vivo was almost matched to the in vitro test using enzymatic reaction of collagenase.  相似文献   

6.
As an alternative to current bone grafting strategies, a poly-lactide-co-glycolide/calcium phosphate composite microsphere-based scaffold has been synthesized by the direct formation of calcium phosphate within forming microspheres. It was hypothesized that the synthesis of low crystalline calcium phosphate within forming microspheres would provide a site-specific delivery of calcium ions to enhance calcium phosphate reprecipitation onto the scaffold. Both polymeric and composite scaffolds were incubated in simulated body fluid (SBF) for 8 weeks, during which time polymer molecular weight, scaffold mass, calcium ion concentration of SBF, pH of SBF, and calcium phosphate reprecipitation was monitored. Results showed a 20% decrease in polymeric scaffold molecular weight compared to 11–14% decrease for composite scaffolds over 8 weeks. Composite scaffold mass and SBF pH decreased for the first 2 weeks but began increasing after 2 weeks and continued to do so up to 8 weeks, suggesting interplay between pH changes and calcium phosphate dissolution/reprecipitation. Free calcium ion concentration of SBF containing composite scaffolds increased 20–40% over control values within 4 h of incubation but then dropped as low as 40% below control values, suggesting an initial burst release of calcium ions followed by a reprecipitation onto the scaffold surface. Scanning electron micrographs confirm calcium phosphate reprecipitation on the scaffold surface after only 3 days of incubation. Results suggest the composite scaffold is capable of initiating calcium phosphate reprecipitation which may aid in bone/implant integration.  相似文献   

7.
8.
《Materials Letters》2004,58(3-4):384-386
Employing the hydrothermal technique, CdS/polymer composite particles were prepared with the surfactant-free cadmium-containing polymer latexes synthesized via a surfactant-free emulsion copolymerization. The CdS/polymer composite particles have been characterized by FTIR spectroscopy, X-ray powder diffraction (XRD) and transmission electron microscopy (TEM).  相似文献   

9.
By adding carbon nanotubes (CNTs) into medium temperature coal tar pitch, mesocarbon microbeads (MCMBs) were obtained via thermal condensation, then CNTs/MCMBs composites were in situ prepared using compression molding. The morphology, structure and mechanical properties of CNTs/MCMBs composites were characterized by optical microscope, digital camera, scanning electron microscope (SEM) and mechanical test machine. Results showed that CNTs were used as the nucleating agent and could inhibit the growth and coalescence of MCMBs. The optical textures of CNTs/MCMBs composites showed similar characteristics to the thermal condensation products from coal tar pitch with CNTs. The mass ratio of CNTs to coal tar pitch played an important role in the mechanical properties of CNTs/MCMBs composites. The density and bending strength of CNTs/MCMBs composite first increased and then decreased with the increase of the proportion of CNTs. When the proportion of CNTs was 5 wt%, the density of the composite reached the maximum (1.76 g/cm3). In addition, the bending strength of the composite reached the maximum (79.6 MPa) as adding 2 wt% CNTs into coal tar pitch.  相似文献   

10.
基于纳米压痕技术对碳纤维/环氧树脂复合材料各组分的原位硬度、 弹性模量和蠕变性能进行了测试, 实验得到了基体、 纤维和微小厚度界面层的力学性能。结果表明, 从环氧树脂基体到碳纤维过渡过程中, 硬度和弹性模量有明显的梯度变化, 并且纤维和树脂基体的原位弹性模量平均值与其非原位性能有一定的变化, 实验得到纤维的原位弹性模量有所下降, 环氧树脂的弹性模量有所增加。试件制备过程中的机械研磨对其表面产生的残余应力和复合后两种材料的相互影响是组分材料原位性能变化的主要原因。各组分的蠕变性能呈现出明显的差异。  相似文献   

11.
刘跃军  潘秀梅  刘亦武  谭井华 《功能材料》2012,43(22):3108-3113
选取3种偶联剂(KH550、KH560和KH570),将纳米SiO2进行改性,并采用熔融共混法分别与4种结晶性能不同的聚合物(HDPE、PP、PVC和PC)共混制备了一系列纳米复合材料(0~5%(质量分数)SiO2),并吹塑成薄膜。采用红外光谱(IR)、差示扫描量热仪(DSC)及扫描电镜(SEM)对纳米SiO2和复合材料的结构进行了表征,并对复合材料的力学性能、阻隔性能等进行了表征。结果表明,纳米SiO2与偶联剂均形成化学键合,改性后的纳米SiO2在各聚合物中分散较好,且在聚合物中起到异相成核的作用。在相同纳米SiO2含量下,SiO2对结晶性能不同的聚合物的结晶改善情况有差异,且纳米SiO2的异相成核作用在结晶性聚合物中更为明显,能使复合材料的结晶更为完善,结晶性能的改变与复合材料的阻隔性能能够形成一定关系。  相似文献   

12.
Transparent TiO2 nanoparticle/polymer hybrids were synthesized from titanium isopropoxy methacrylate via hydrolysis and polymerization in 2-methoxymethanol. Crystalline TiO2 nanoparticles were uniformly dispersed in the polymer matrix. A highly transparent free-standing TiO2 nanoparticle/polymer hybrid film was synthesized. The refractive index (RI) of the hybrid films on Si substrates could be controlled by varying the concentration of TiO2 nanoparticles: the RI increased with increase in Ti content. A further increase in the RI was achieved upon irradiation with ultraviolet light. A TiO2 nanoparticle/PMMA hybrid without the silica component exhibited an RI of 1.717 and an Abbe number of 21.6.  相似文献   

13.
Cobalt ferrite nanorods/graphene composites were prepared by a one-step hydrothermal process using NaHSO3 as the reducing agent and 1-propyl-3-hexadecylimidazolium bromide as the structure growth-directing template. The reduction of graphene oxide and the in situ formation of cobalt ferrite nanorods were accomplished in a one-step reaction. The structure and morphology of as-obtained composites were characterized by field emission scanning electron microscopy, transmission electron microscopy, high resolution transmission electron microscopy, atomic force microscope, X-ray diffractometer, Fourier transform infrared spectra, X-ray photoelectron spectroscopy and Raman spectroscopy. Uniform rod-like cobalt ferrites with diameters of about 100 nm and length of about 800 nm were homogeneously distributed on the graphene sheets. The hybrid materials showed a saturation magnetization of 42.5 emu/g and coercivity of 495.1 Oe at room temperature. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of − 25.8 dB was observed at 16.1 GHz for the cobalt ferrite nanorods/graphene composites with a thickness of 2 mm, and the effective absorption frequency (RL <  10 dB) ranged from 13.5 to 18.0 GHz. The composites exhibited better absorbing properties than the cobalt ferrite nanorods and the mixture of cobalt ferrite nanorods and graphene.  相似文献   

14.
The formation of the FeTe compound from a mixture of Fe and Te powders was studied in situ by means of high-energy synchrotron X-ray diffraction. FeTe does not form directly from the starting elements; instead, FeTe2 forms as an intermediate product. During a 2 °C/min heating ramp, Te first reacts between 200 and 350 °C with a part of the Fe powder to form FeTe2, which then further reacts between 350 and 530 °C with the remaining Fe to yield FeTe. This phase formation path is simpler than in the case of FeSe and the differences are discussed in terms of the equilibrium phase diagrams of these two systems.  相似文献   

15.
《Materials Letters》2007,61(11-12):2368-2372
Novel hybrid-reinforced (TiB + La2O3)/Ti composites were in situ synthesized utilizing the reaction between Ti, LaB6 and B2O3 through homogeneous melting in a non-consumable vacuum arc remelting furnace. The thermodynamics of in situ synthesis reaction were analyzed. The phases in the composites were identified by X-ray diffraction (XRD) and the microstructures of the composites were examined by optical microscope (OM), backscattered scanning electron microscope (SEM) and field-emission SEM. Three kinds of reinforcements were found in the composites: La2O3 particles (diameter: ∼ 2 μm), TiB whiskers (width: ∼ 3 μm) and TiB plates (thickness: ∼ 1.5 μm). The reinforcements' sizes were fine and they were homogeneously distributed in the matrix.  相似文献   

16.
17.
18.
A new generation of organic/inorganic composites is offering a promising approach for creating biocompatible and biodegradable materials with mechanical properties that match that of human bone better than traditional metallic implants. Here, we report a novel technique whereby hydroxyapatite powder is encapsulated in polylactide-based microspheres, processed by an emulsion-solvent evaporation method, and then used as the building blocks to produce dense, microstructurally-uniform composites through a hot pressing route. The mechanical properties of these composites––both ab initio and after in vitro degradation in a simulated environment- were subsequently characterized. Although despite in vitro degradation remains an issue, the Young’s modulus, bending strength and fracture resistance were higher than the corresponding minimum values for human cortical bone. These results suggest that the hot-pressing of hydroxyapatite/polylactide microspheres can be a viable route for the synthesis of load-bearing bone-replacement materials.
A. P. TomsiaEmail:
  相似文献   

19.
羟基磷灰石/聚己内酯-壳聚糖复合材料的制备与表征   总被引:1,自引:1,他引:0  
为提高复合材料的力学性能和生物活性以聚己内酯(PCL) 、壳聚糖(CS) 、羟基磷灰石(HA)为原料,用Hakke流变仪挤出成型制备了不同 HA含量的HA/ PCL-CS复合材料,并对其进行了拉伸性能的测试,考察了复合材料浸渍于模拟体液(SBF)中的生物活性及其在生理盐水中的降解性能,用X射线衍射(XRD) 、傅里叶变换红外光谱(FTIR) 、扫描电镜(SEM) 、接触角测试仪对材料进行了表征。结果表明:复合材料的拉伸强度和断裂伸长率随 HA含量的增加而降低,而杨氏模量随 HA含量的增加而升高;亲水性能随着HA含量的增加而提高; HA/PCL-CS复合材料在模拟体液(SBF)中浸渍 14d后,在表面形成一层弱结晶的碳磷灰石(CHA)覆盖层 , 显示出良好的生物活性; PCL 的分子量随着降解时间的延长而降低,溶液pH值和质量损失率却增大,浸渍28d后,溶液pH值达到9. 54,失重率达到5.86%,显示出良好的生物可降解性。  相似文献   

20.
Laser-based processing enables a wide variety of device configurations comprising thin films and nanostructures on sensitive, flexible substrates that are not possible with more traditional thermal annealing schemes. In near-field optical probing, only small regions of a sample are illuminated by the laser beam at any given time. Here we report a new technique that couples the optical near-field of the laser illumination into a transmission electron microscope (TEM) for real-time observations of the laser-materials interactions. We apply this technique to observe the transformation of an amorphous confined Si volume to a single crystal of Si using laser melting. By confinement of the material volume to nanometric dimensions, the entire amorphous precursor is within the laser spot size and transformed into a single crystal. This observation provides a path for laser processing of single-crystal seeds from amorphous precursors, a potentially transformative technique for the fabrication of solar cells and other nanoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号