共查询到20条相似文献,搜索用时 15 毫秒
1.
关联规则挖掘是数据挖掘领域中的一个非常重要的研究内容,其主要目标就是发现数据库中一组对象之间某种关联。频繁项集挖掘是关联规则挖掘的关键步骤,它在很大程度上决定了关联规则挖掘的效率。介绍了Apriori算法及其算法改进。该改进算法对剪枝步进行了优化,提高了连接效率,并且不断减小数据库的规模,去掉无效事务,减少了每次扫描数据库所花费的时间,提高了算法效率。经过试验论证,性能比原有算法提高,具有一定的实用性。 相似文献
2.
本文利用频繁项集的一个性质,对Apriori算法中的生成候选项集这一步进行改进,大大减少不必要的计算,从而加快候选项集生成的速度。 相似文献
3.
在分析Apdori算法的基础上,提出一种改进Apriori的算法,其主要思想是基于数组向量的数据布局,即根据每个事务不同的项目长度,分别存储在相应列长度的二维数组中,同时合并项目完全相同的事务,并记录事务的数目.新的算法改进了连接比较的次数、减少不必要事务的扫描和提高了算法对内存空间的利用效率.应用示例表明,该算法时间复杂度降低;实验结果显示算法是有效可行的. 相似文献
4.
根据Apriori算法的原理,提出一种具有跳跃式前进与回退补齐的改进算法J_Apriori。计算频繁K项集后,求出未剪枝的候选2K项集。在满足跳跃式前进策略的条件下先求出频繁2K项集,则2K项集的所有(K+1)至(2K-1)项子集不需要再扫描庞大的数据集,可以直接加入到频繁项集中,然后再回退补齐那些不是2K项集的子集的频繁项集。改进的算法减少了扫描数据集的次数。实验表明改进的算法有效地提高了Apriori算法的效率。 相似文献
5.
本文采用一种基于布尔矩阵的频繁集挖掘算法。该算法直接通过支持矩阵行向量的按位与运算来找出频繁集,而不需要Apriori算法的连接和剪枝,通过不断压缩支持矩阵,不仅节约了存储空间,还提高了算法的效率。 相似文献
6.
陈伟 《计算机技术与发展》2009,19(6)
关联规则是数据挖掘的主要技术之一,是指从一个大型的数据集中发现有趣的关联或相关关系,即从数据集中识别出频繁项集,然后再利用这些频繁集创建描述关联规则的过程.频繁项集挖掘是关联规则挖掘的主要步骤,在频繁项集挖掘中,需要大量进行两个操作:判断两个k-项集是否是前k-1项相同且最后一项不同,即连接步;判断一个项集是否为另一个项集的子集,即剪枝步,通过减少连接操作和剪枝操作的循环次数,以此来提高Apriori算法的效率. 相似文献
7.
关联规则挖掘Apriori算法的研究与改进 总被引:7,自引:1,他引:6
关联规则挖掘是数据挖掘研究领域中的一个重要任务,旨在挖掘事务数据库中有趣的关联.Apriori算法是关联规则挖掘中的经典算法.然而Apriori算法存在着产生候选项目集效率低和频繁扫描数据等缺点.对Apriori算法的原理及效率进行分析,指出了一些不足,并且提出了改进的Apriori_LB算法.该算法基于新的数据结构,改进了产生候选项集的连接方法.在详细阐述了Apriori_LB算法后,对Apriori算法和Apriori_LB算法进行了分析和比较,实验结果表明改进的Apriori_LB算法优于Apriori算法,特别是对最小支持度较小或者项数较少的事务数据库进行挖掘时,效果更加显著. 相似文献
8.
深入分析关联规则Apriori算法 总被引:2,自引:0,他引:2
目前,已经提出了许多挖掘关联规则的算法,其中最著名的是Apriori算法及其变型。这些传统的算法大多存在项集生成瓶颈和难以确定合适的支持度阈值的问题,并且没有考虑数据库的被分析项的各自不同的重要性。深入分析研究关联规则Apriori算法,并给出几种改进的算法。 相似文献
9.
关联规则反映了大量数据中项集之间的相互依存性和关联性。文章介绍了关联规则挖掘方法的原理,然后对关联挖掘及其典型算法进行分析,指出了Apriori算法的局限性在于会产生大量冗余的候选集并频繁扫描数据库。接下来给出一种改进的Apriori算法,通过减少对数据库搜索的次数,从而减少数据挖掘过程中的I/O开销。实践证明,用改进后的算法进行关联挖掘,效率优于传统的方法。 相似文献
10.
11.
麦丞程 《电脑编程技巧与维护》2015,(11)
设计并实现了一个基于Apriori算法的关联规则挖掘系统.该系统采用Java技术,具有可移植性强、人机交互界面美观、实用性强等优势,可以对频繁项集和关联规则进行挖掘.并对系统进行了测试,发现当数据规模相同时,最小支持度越大,Apriori算法挖掘时间越短;当最小支持度相同时,数据规模越大,Apriori算法挖掘的时间越长. 相似文献
12.
对挖掘关联规则中的Apriori算法的一种改进 总被引:1,自引:1,他引:0
对挖掘关联规则的Apriori算法关键思想以及性能进行了研究,给出该算法的一个改进算法,该改进算法提高了原算法的性能,并从实验中得出相关结果. 相似文献
13.
目前,人们已经提出了许多挖掘关联规则的算法及其变型,其中最著名的是Apriori算法,但传统的算法效率太低。为了解决这些问题,本文提出了一种快速更新的关联挖掘算法。 相似文献
14.
Apriori算法是关联规则挖掘中的经典算法。通过对Apriori算法的基本思想和性能的研究分析,提出了一种基于垂直事务列表的树形结构的挖掘算法,减少了候选频繁项集的数量,提高了挖掘算法的效率。实验结果表明新算法具有良好的性能。 相似文献
15.
关联规则挖掘是数据挖掘中的一个重要研究内容.为了高效、快速地从事务数据库中挖掘出频繁项集,针对数据挖掘的经典关联规则Apriori算法的瓶颈问题提出了改进的方法.算法将事物数据库映射到布尔型数组中,然后所有的操作都针对数组元素值展开.这样大大减少了数据库的扫描次数.算法利用数组的随机访问特性及布尔型数据的简单"与"操作,直接产生频繁项集,而不产生大量的候选项集.经理论分析和实验结果显示该算法在效率上明显优于Apriori 算法. 相似文献
16.
基于频繁项集特性的Apriori算法的改进 总被引:3,自引:0,他引:3
Apriori算法是关联规则中一种重要算法.Apriori算法在求出频繁项集的过程中,需要扫描事务项集里的数据.由于事务项集里只是部分数据有用,所以改进算法,缩小所需扫描的事务项集大小,并提出了一种简单的数据结构--树型结构来存储事务项集数据,使得算法在数据集量巨大时,性能得到有效提高,并用实例验证了这些改进能够正确、有效、快速地实现该算法. 相似文献
17.
该文在对关联规则挖掘中Apriori算法的深入研究和分析的基础上,发现并指出了该算法存在的不足,并对其进行以下三方面改进:改善候选项集支持度的计算方法;缩小候选项集的生成规模;减少对数据库的扫描次数。实验结果表明,改进算法性能得到了明显提高。 相似文献
18.
19.
Apriori算法的三种优化方法 总被引:35,自引:3,他引:35
通过对Apriori算法的思想和性能的分析,认为Apriori算法存在以下三点不足:(1)由K阶频繁集生成K+1阶候选频繁集时,在K+1阶候选频繁集中过滤掉非频繁集的策略值得进一步改进;(2)连接程序中相同的项目重复比较太多,因而其效率值得进一步改进;(3)在回扫数据库时有许多不必比较的项目或事务重复比较。根据上述三点不足,提出了相应的三种优化策略来优化Apriori算法,得到一效率较高的改进Apriori算法。 相似文献
20.
关联规则反映了大量数据中项集间的相互依存性和关联性。Apriori算法是关联规则挖掘中的经典算法,目前已有很多的改进版本,但大多存在多次扫描数据库,项集生成瓶颈和模式匹配频繁的问题,算法效率比较低。本文深入的分析研究关联规则Apriori算法,改进候选频繁项目集的连接和剪枝策略,改进对事务的处理方式,减少模式匹配所需的时间开销,并给出了改进算法。 相似文献