首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用反应射频(RF)磁控溅射法在n型(100)单晶S基片上沉积了ZrO2膜,研究了氧分压与ZrO:薄膜的表面粗糙度和沉积速率、SiO2中间界层的厚度以及ZrO2薄膜的折射率之间关系。结果表明:随着氧分压增高,薄膜的沉积速率降低,表面粗糙度线性地增加;在低的氧分压情况下,Si基片表面的本征SiO2层的厚度增加幅度较小,在高的氧分压情况下,Si基片表面的本征SiO2层的厚度有较大幅度地增加;在O2/Ar混和气氛下,溅射沉积的ZrO2薄膜的折射率受氧分压的影响不显著,而在纯氧气气氛环境下,ZrO2薄膜的折射率明显偏低,薄膜的致密性变差。  相似文献   

2.
气体流量对反应磁控溅射氧化铝/PET薄膜阻隔性能的影响   总被引:2,自引:2,他引:0  
采用直流电源磁控溅射的方法在20μmPET表面沉积氧化铝薄膜,用红外光谱对薄膜成份进行了分析,用MOCON薄膜阻隔性能测试设备对薄膜的透氧率、透湿率进行了测试。结果表明:薄膜上Al-O的峰值强度变化与O2和Ar气流量有关,当O2和Ar气流量分别为9和105mL/min时:Al-O波峰强度最大;制备高阻隔氧化铝薄膜的透明度最佳;所得氧化铝薄膜透氧率比原膜降低15倍,透湿率降低5倍。  相似文献   

3.
一、概况从前,敷单层透光膜是光学另件减少反射损失的唯一有效办法。理论分析可知,当薄膜光学厚度等于1/4个波长而薄膜材料折射率小于玻璃折射率时,则薄膜与玻璃之间的分界面上的反射光线和薄膜上表面的反射光线之间正好相差180°位相而发生干涉。若能使薄膜物质的折射率和薄膜二边物质折射率之间,存在如下关系,即 N_2~2=N_1·N_3,则这二个反射光波的振幅相等,干涉时就会互相  相似文献   

4.
本文利用透射电子显微镜、原子力显微镜、X光电子能谱等微观分析手段 ,系统研究了氧离子束辅助离子束沉积方法制备的Al2 O3 薄膜的化学成分、微观结构、表面形貌及其随退火温度的变化 ,并对Al2 O3 薄膜折射率、显微硬度和膜基结合强度等物理特性及其随沉积温度的变化进行了详细研究。研究发现 :用离子束辅助沉积制备的薄膜基本满足Al2 O3 的标准成分配比 ;在沉积温度低于 5 0 0℃制备的Al2 O3 薄膜以非晶Al2 O3 相a Al2 O3 为主 ;Al2 O3 薄膜的表面粗糙度、折射率、显微硬度随沉积温度的增加而增加 ;当沉积温度高于 2 0 0℃时 ,薄膜与基体间的膜基结合强度将随沉积温度的增加而下降。分析表明 :薄膜表面形貌与晶体内部的结构相变有关 ,薄膜的退火相变途径为a Al2 O380 0℃ γ Al2 O310 0 0℃ γ Al2 O3 +α Al2 O312 0 0℃ α Al2 O3 。  相似文献   

5.
介绍了硅功率器件Cu电极保护钝化膜层氧化铝的制备方法。采用热法ALD工艺和等离子增强ALD工艺在铜上沉积氧化铝薄膜,研究了不同ALD工艺、氧化剂种类、沉积温度和载气对氧化铝膜层质量及铜抗氧化保护效果的影响。结果表明:氧化剂对原子层沉积氧化铝薄膜的质量和铜电极的保护性能起着决定性作用;以臭氧(O3)作为氧化剂,氧化铝薄膜极易脱落,与铜表面的结合力很差;以氧等离子体(O-)作为氧化剂,铜表面被氧化形成了氧化铜(CuOx)层;而以水蒸气(H2O)作为氧化剂,在低温100℃下,得到的Al2O3薄膜致密,无明显缺陷,且与铜金属层的结合力较优,对铜抗氧化保护效果良好;当沉积温度高于200℃时,原子层沉积氧化铝薄膜的缺陷明显增多;等离子增强ALD工艺中,当载气为Ar时,所得氧化铝膜厚度不均匀,铜电极发生强烈氧化。  相似文献   

6.
采用电子束蒸发混合膜料的方法制备了TiO2/ZrO2复合薄膜,研究了工艺条件(气体流量、沉积速率、基片温度、组份比)对其光学特性的影响。采用椭偏法测量了薄膜的折射率,分析了不同配比复合薄膜的色散特性,得出工艺参数与薄膜光学性能的相互关系,实现了不同折射率的配比。研究结果表明,无论TiO2/ZrO2摩尔比为1:1,1:2还是2:1,其折射率均随沉积温度的升高而增大,但温度升高致使薄膜折射率变化的幅度不大;复合薄膜的折射率随真空度的降低而降低;随着束流从100到160mA增加,复合薄膜的折射率从2.1699到2.2439略微增加;当TiO2/ZrO2比例分别为1:2,1:1和2:1时,薄膜的折射率相应为2.0886,2.1436和2.2584(d光),表明采用工艺优化和蒸镀混合膜料的方法实现折射率的配比仍然是一种行之有效的方法。  相似文献   

7.
《真空》2016,(2)
本文研究氧等离子体辅助原子层沉积氧化铝中各个沉积参数对薄膜性能和结构的影响。在氧等离子体辅助原子层沉积氧化铝的过程中,通过改变基底温度、等离子体放电时间、等离子体放电功率、单体三甲基铝冲洗时间和反应气体氧气冲洗时间,研究了工艺参数对于氧化铝的生长的影响。通过发射光谱仪(OES)对等离子体进行检测,原子力显微镜(AFM)和椭偏(SE)对薄膜表面形貌、厚度和折射率进行测量及SEM对薄膜断面进行检测。结果显示,在室温下氧等离子体辅助氧化铝沉积需要较长的单体三甲基铝的冲洗时间才能得到粗糙度小的薄膜,薄膜沉积速率随温度的升高而减小(低的沉积温度),薄膜的折射率则变大。而等离子体在40W到80W的低放电功率下,放电功率对氧化铝的沉积速率影响不大。  相似文献   

8.
利用脉冲多弧离子镀技术在硅基底上沉积出非晶的类金刚石薄膜。薄膜的折射率为 2 8左右 ;沉积速率与主回路电压以及脉冲频率有关 ;膜层致密 ,但薄膜表面不光滑 ;薄膜电阻率接近 1× 10 10 Ω·cm数量级 ;薄膜的硬度及附着力与基底温度、主回路电压以及脉冲频率密切相关 ;薄膜中存在强的内应力 ,内应力是影响膜层附着力的主要因素。  相似文献   

9.
离子束辅助沉积A12O3薄膜的微观状态及其物理特性研究   总被引:1,自引:0,他引:1  
本利用透射电子显微镜、原子力显微镜、X光电子能谱等微观分析手段,系统研究了氧离子束辅助离子束沉积方法制备的Al2O3薄膜的化学成分、微观结构、表面形貌及其随退火温度的变化,并对Al2O3薄膜折射率、显微硬度和膜基结合强度等物理特性及其随沉积温度的变化进行了详细研究。研究发现:用离子束辅助沉积制备的薄膜基本满足Al2O3的标准成分配比;在沉积温度低于500℃制备的Al2O3薄膜以非晶Al2O3相a—Al2O3为主;Al2O3薄膜的表面粗糙度、折射率、显微硬度随沉积温度的增加而增加;当沉积温度高于200℃时,薄膜与基体间的膜基结合强度将随沉积温度的增加而下降。分析表明:薄膜表面形貌与晶体内部的结构相变有关,薄膜的退火相变途径为a—Al2O3800℃→γ-Al2O31000℃→γ-Al2O3 α-Al2O31200℃→α-Al2O3。  相似文献   

10.
镀制工艺对TiO2光学膜层折射率影响研究   总被引:2,自引:1,他引:1  
研究分析了基底温度、沉积速率、氧气分压、离子束辅助沉积等工艺参数和条件对TiO2膜层折射率的影响.研究表明,随着基底温度升高,TiO2光学膜层折射率呈上升趋势;随着沉积速率提高,TiO2膜层折射率存在极值;采用离子束辅助沉积工艺,可以有效提高TiO2膜层折射率值,所制备的TiO2膜为非晶态结构,具有较高的折射率和较小的光学损耗.  相似文献   

11.
采用氧化亚铜(Cu_2O)陶瓷靶,利用射频磁控溅射沉积法在氮气和氩气的混合气氛下制备了N掺杂Cu_2O(Cu_2O∶N)薄膜,并在N_2气氛下对薄膜进行了快速热退火处理,研究了N_2流量和退火温度对Cu_2O∶N薄膜的生长行为、物相结构、表面形貌及光电性能的影响。结果显示,在衬底温度300℃、N_2流量12sccm条件下生长的薄膜为纯相Cu_2O薄膜;在N_2气氛下对预沉积薄膜进行快速热退火处理不影响薄膜的物相结构,薄膜的结晶质量随退火温度(450℃)的升高而显著改善;快速热退火处理能改善薄膜的结晶质量和缺陷,降低光生载流子的散射,增强载流子的传输,预沉积Cu_2O∶N薄膜经400℃退火处理后展示出较好的电性能,薄膜的霍尔迁移率(μ)为27.8cm~2·V~(-1)·s~(-1)、电阻率(ρ)为2.47×10~3Ω·cm。研究表明低温溅射沉积和快速热退火处理能有效改善Cu_2O∶N薄膜的光电性能。  相似文献   

12.
采用电子回旋共振微波等离子体源增强磁控溅射沉积氧化铝薄膜。X射线光电子谱和X射线衍射分析表明,在600℃沉积温度下,Si(100)基片上获得了亚稳的具有化学计量配比成分、面心立方结构的γ-Al2O3薄膜。薄膜的折射率为1.7,与稳定的α-Al2O3体材料相当。  相似文献   

13.
采用等离子体增强化学气相沉积法(PECVD)在聚乳酸(PLLA)薄膜表面沉积SiO_X层,以改善PLLA薄膜对气体的透过性和选择性。通过红外光谱仪和压差法透气仪分别对沉积效果和薄膜透气性进行测试。结果表明,PLLA/SiO_X复合膜相比纯PLLA膜,其对气体的透过性有所下降,而选择性有所提高。在25℃时,40μm的PLLA/SiO_X膜对O_2、CO_2、N_2和水蒸气的透过性分别降低了58.9%,48.6%,67.8%和52.3%,透气比α(CO_2/O_2)、α(O_2/N_2)和α(CO_2/N_2)则分别平均提高了20.0%,21.8%和37.5%;25℃时,60μm的PLLA/SiO_X膜对O_2、CO_2、N_2和水蒸气的透过性分别降低了23.8%,14.5%,46.7%和49.5%,透气比α(CO_2/O_2)、α(O_2/N_2)和α(CO_2/N_2)则分别提高了10.7%,30.7%和38.2%。  相似文献   

14.
本文采用电子束蒸发配以Kaufman离子源产生的氧离子辅助沉积了Ta2O5薄膜,用原子力显微镜(AFM)表征了薄膜的表面形貌、表面粗糙度,探讨了Ta2O5薄膜在此工艺下的表面质量.用分光光度计测试了不同厚度下薄膜的透射率,计算出了其折射率.实验及分析结果表明:所制备的Ta2O5薄膜表面平整度高,是弱吸收薄膜,随薄膜厚度的增加短波截止波长向长波方向略有漂移;折射率随膜厚的变化不大,此制备工艺的可重复性强,制备薄膜性能稳定;薄膜表面粗糙度随膜厚的增加而增加,但是增加不大,所制备Ta2O5薄膜是理想光学薄膜;离子束的加入,使得薄膜表明形貌变化更加复杂,打破了热蒸发制备薄膜的柱状生长模式.  相似文献   

15.
在有机基体表面等离子体增强化学气相沉积(PECVD) Al_2O_3薄膜是提高其阻隔性能的有效方法,而高品质的Al_2O_3薄膜是提高阻隔性的关键因素之一。脉冲射频等离子体增强化学气相沉积(RF-PECVD)可以实现比热化学气相沉积技术更宽的气体工作压力、更多的单体选择和更好的薄膜性能,适合于制备高质量的薄膜。本文报道采用脉冲RF-PECVD氧化铝薄膜,且对影响薄膜结构和性能的工艺参数进行研究。通过椭圆偏振仪测量Al_2O_3的生长速率和折射率;利用红外光谱、扫描电镜和原子力显微镜对沉积的Al_2O_3薄膜进行成分、结构、表面粗糙度和形貌分析、测量和表征;采用透湿仪测量在有机聚酯薄膜表面沉积Al_2O_3层的阻隔性能。结果表明:薄膜沉积过程中的工作气压和沉积温度对脉冲RF-PECVD薄膜性能影响较大,在一定的沉积温度范围内,沉积的Al_2O_3薄膜为无色、透明、表面结构平滑致密;在温度相同的条件下,工作气压越高,纳米膜生长速率越快;而在相同工作气压下,沉积温度越低,薄膜生长速率越快。  相似文献   

16.
太阳能电池是一种清洁能源,近年来发展迅猛。减反射膜能大幅减少太阳能电池对光线的反射,从而提高电池光电转化率。为优化减反射效果,减反射膜设计多样,包括单层膜、双层膜、三层膜和多层膜,膜层不同对薄膜材料的折射率要求不同。氮化硅薄膜是一种优秀的硅基太阳能减反射膜,其折射率在1.78~2.5之间,调控范围广。本文采用脉冲激光沉积法制备氮化硅减反射膜,研究不同工艺参数对硅片上沉积的氮化硅薄膜性能的影响。  相似文献   

17.
采用WO3和ZrO2复合陶瓷靶材,以射频磁控溅射法在石英基片上沉积制备了ZrW2O8薄膜.利用X射线衍射仪(XRD)、表面粗糙轮廓仪和扫描电子显微镜(SEM),研究了不同工艺参数和不同退火温度对ZrW20s薄膜的相组成、沉积速率和表面形貌的影响.采用高温X射线衍射和Powder X软件研究薄膜的负热膨胀特性.实验结果表明随着溅射功率的增加,薄膜沉积速率增加;而随着工作气压的增加,薄膜沉积速率先增加后减小;磁控溅射沉积制备的ZrW20s薄膜为非晶态,表面平滑、致密,随着热处理温度的升高,薄膜开始结晶且膜层颗粒增大;在740℃热处理3 n血后得到膜层颗粒呈短棒状的三方相ZrW2O8薄膜,在1200℃密闭条件下热处理3 min淬火后得到膜层颗粒呈球状的立方相ZrW2O8薄膜,且具有良好的负热膨胀特性.  相似文献   

18.
将真空蒸发沉积的Al膜 ,在一台高频等离子体辉光放电的装置中进行阳极氧化 ,得到了光学和电学性能稳定的Al2 O3 膜。Al膜表面氧化层结构是γ Al2 O3 ,在波长 30 0~ 70 0nm范围内折射率为 1 5 3~ 1 34。文章还对用不同方法制备的Al2 O3 膜的折射率的差异进行了讨论  相似文献   

19.
对InN/GaN/Al2O3和Ga2O3/GaN/Al2O3多层膜结构进行了椭圆偏振光谱研究。所有GaN样品均采用MOCVD工艺在蓝宝石(Al2O3)衬底上生长所得。应用多层介质膜模型,在300~800nm测试波长范围内拟合得到了样品各层厚度和折射率色散关系,并与GaN单层膜色散关系相比较,分析了各层膜之间对自身折射率的影响。研究结果表明,InN和Ga2O3表面均存在一个粗糙层,采用有效介质近似模型可使拟合结果更为准确;相对于GaN单层膜结构,InN薄膜使其下面的GaN层折射率明显增大,这应与界面层态密度有关;而在300~400nm测试范围内,Ga2O3折射率出现反常色散现象,InN消光系数亦产生了一个强的吸收峰,这则可能与GaN层在360nm左右存在的一个强吸收(Eg≈3.4eV)有关。  相似文献   

20.
将真空蒸发沉积的A1膜,在一台高频等离子体辉光放电的装置中进行阳极氧化,得到了光学和电学性能稳定的Al2O3膜。A1膜表面氧化层结构是γ-Al2O3,在波长300-700nm范围内折射率为1.53-1.34。章还对用不同方法制备的Al2O3膜的折射率的差异进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号