首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
聚醚酰亚胺基炭分子筛膜的形成及其气体分离性能研究   总被引:1,自引:0,他引:1  
以商用聚醚酰亚胺(PEI)作为前驱体,采用经过ZrO2-Al2O3复合溶胶修饰的陶瓷氧化铝为支撑体,浸渍涂膜制备聚合物膜,在空气中预氧化处理后,经500~800℃不同的炭化温度下制备出气体分离炭分子筛膜。为了考察炭化温度对炭膜结构和气体分离性能的影响,采用热重分析(TG)、拉曼光谱(Raman)、X射线衍射(XRD)、扫描电镜(SEM)和气体渗透等测试手段,对热解过程聚合物膜热稳定性、炭微晶结构及石墨化进程、微观形貌和气体分离性能进行了系统研究。结果表明,不同的炭化温度对所形成炭膜表现出不同物理和化学结构、炭结构和孔结构,最终影响炭分子筛膜的气体渗透性和分离选择性。  相似文献   

2.
以酚醛树脂为碳前驱体,两亲嵌段共聚物F127为软模板,在碱-酸体系条件下合成非支撑介孔炭膜。通过扫描电镜(SEM)、透射电镜(TEM)、低温氮气吸附-脱附和气体分离测试对炭膜的形貌、孔结构以及气体分离性能进行了测试和表征。结果表明,通过改变软模板剂F127的用量和炭化温度可以实现对炭膜孔结构的控制制备。随着F127与苯酚质量比的增大,炭膜的比表面积、总孔容以及平均孔径呈先增大后减小的趋势;在质量比为1.06时,比表面积达467 m2/g,介孔率为31.3%。随炭化温度由600℃升高至800℃时,炭膜的孔结构由无规则的蠕虫状孔结构转变成丰富的二维六方孔道结构。炭膜厚度约300μm,对CO2和N2具有良好的分离性能,CO2/N2分离系数可达2.53。  相似文献   

3.
以BPDA-ODA型聚酰亚胺为前躯体,沸石为掺杂剂,通过成膜和炭化等过程制备了杂化炭膜.分别采用热失重、X射线衍射、扫描电子显微镜及渗透技术研究了前躯体热稳定性,炭膜微观结构、形貌及气体分离性能.考察了ZSM-5与5A两种沸石含量、炭化温度、渗透温度及渗透压力等因素对炭膜气体分离性能的影响.结果表明:H2、CO2、O2和N2 4种气体主要以分子筛分机理渗透通过炭膜,实现选择性分离.在650℃炭化温度下得到杂化炭膜随沸石含量提高,气体渗透性与选择性均略降低;5A杂化炭膜的渗透性与选择性都显著高于ZSM—5杂化炭膜;随渗透压力提高,杂化炭膜的气体渗透性与选择性升高.当炭化温度从650℃升高到750℃时,杂化炭膜的渗透性降低.  相似文献   

4.
以间苯二酚-甲醛为碳源,F127为添加剂,经成膜与炭化得到炭膜.通过热失重分析、红外光谱、元素分析及透射电镜从微观上分析了前驱体的热解过程及碳结构演变.采用X射线衍射及氮气吸附技术分别测定了炭膜碳结构与孔结构.研究了成膜基质表面疏水性对成膜过程的收缩率、碳结构、孔结构及气体分离性能的影响.结果显示,成膜基质对炭膜微观结构与分离性能影响显著.疏水性较大的玻璃比聚四氟乙烯与不锈钢更有助于减小成膜过程中径向收缩率,并得到高比表面积与孔体积的炭膜,其对O2/N2选择性高达10以上.  相似文献   

5.
以PPESK为前驱体,CHCl3为溶剂,分别采用冷冻干燥法和冷藏干燥法制备气体分离炭膜,借助于红外光谱、热重分析、X射线衍射和气体渗透等测试手段,研究探讨了干燥方式对聚醚砜酮(PPESK)基炭膜的化学结构、炭微结构及气体分离性能的影响.结果表明,干燥方式对炭膜结构性能的影响主要体现在促使前驱体在干燥过程中形成具有不同化学结构的聚合物膜,使它们在以后的预氧化和低温热解炭化过程中表现出不同的演变规律:与冷藏干燥相比,冷冻干燥得到的聚合物膜在预氧化和炭化过程中分解反应程度较弱,但芳香缩合反应却很深刻,使形成的炭膜微结构尺寸较小,气体分离性能较高,并具有良好的表观柔韧性.所以,采用CHCl3为溶剂制备PPESK炭膜,冷冻干燥将是首选干燥方式.  相似文献   

6.
以ZSM-5沸石掺杂改性的1, 4-双(4-氨基-2-三氟甲基-苯氧基)苯-1, 2, 3, 4-环丁烷四甲酸二酐型聚酰亚胺为前驱体, 通过旋涂成膜和热解过程制备了平板状支撑炭膜。采用热失重、红外光谱、X射线衍射、扫描电镜及气体渗透技术分别研究了前驱体热稳定性、膜表面官能团、微结构, 微观形貌及分离性能。考察了ZSM-5掺杂量及热解温度对炭膜结构和气体分离性的影响。结果表明: 经ZSM-5改性后前驱体热稳定性与残炭量降低, 炭膜微观结构变致密; 加入沸石显著提高了炭膜的渗透性, 且随ZSM-5掺杂量增加, 气体渗透性先减小后增大; 随着热解温度升高, 炭膜的渗透性与选择性皆减小。经650℃热解制得杂化炭膜对H2/N2体系的分离性能均远超过Robeson上界限。  相似文献   

7.
以聚酰亚胺为前驱体,NaY型沸石为掺杂剂,经成膜和炭化制备了杂化炭膜.采用扫描电镜、X射线衍射、热重分析、红外光谱分析对膜样品的结构与性质进行了表征.考察了掺杂剂量、渗透温度与渗透压力对炭膜的结构及气体分离性能的影响.结果表明,与纯炭膜相比,杂化炭膜在保持高O_2/N_2选择性的前提下,渗透性显著提高;随着膜内沸石含量的提高,杂化炭膜的渗透性明显提高.由沸石质量分数为0.5%前驱体经650℃炭化所制备的杂化炭膜,对O_2的渗透性达79.5 Barrer, O_2/N_2选择性达7.5.  相似文献   

8.
以Kapton型聚酰胺酸(PAA)为前体,以N,N-二甲基乙酰胺(DMAc)为溶剂和凝胶浴添加剂,分别以水、乙醇、正丙醇、正丁醇为凝胶介质,采用干湿相转化法制备不对称聚酰亚胺膜,经高温炭化制备不对称炭膜.探讨了相转化制膜工艺如铸膜液浓度、蒸发时间、凝胶介质及炭化温度等因素对不对称炭膜微结构和气体分离性能的影响,并采用SEM、XRD等手段对不对称炭膜的表面形态及微结构进行表征.研究表明,采用相转化的方法成功地制备了具有不对称结构的炭膜,相转化制膜工艺、炭化工艺对所制备不对称炭膜的结构及气体分离性能有较大的影响;控制适宜的铸膜液浓度、预蒸发时间有利于制备具有高通量、高分离选择性的不对称炭膜;提高炭化温度可以改变其微观结构,使炭膜的有序度和致密度增加,进而对膜的气体分离性能产生影响。SEM分析表明,所制备的不对称炭膜表面致密无缺陷,且具有明显的致密皮层和多孔支撑层结构;XRD显示,制备的不对称炭膜的微结构为乱层炭结构.  相似文献   

9.
采用软模板法合成有序介孔炭(OMC),利用XRD、TEM及SEM等分析方法对其进行结构性能分析,探讨了催化剂和模板剂的种类及用量、反应温度等合成工艺条件对形成OMC结构性能的影响。以最佳工艺条件制备的OMC前驱体为涂膜液涂敷在管状微滤炭膜表面,经炭化制得有序介孔复合炭膜,而后考察了复合炭膜的气体渗透性能。结果表明:以盐酸为催化剂、模板剂F127/间苯二酚摩尔比为0.0081、反应温度为30℃时,可合成有序程度最佳的OMC前驱体。用该OMC前驱体涂敷微滤炭膜制备的有序介孔复合炭膜,改善了微滤炭膜的孔结构,最大孔径由0.530μm减小至0.299μm,同时提高了炭膜的气体渗透通量。其中,由混煤微滤炭膜所制有序介孔复合炭膜,N2气渗透通量达1.18·10-8m3·m-2·s-1·Pa-1,是未经修饰烟煤微滤炭膜的4倍。  相似文献   

10.
Fe_3O_4掺杂制备气体分离功能炭膜   总被引:1,自引:0,他引:1  
采用共混法在聚酰亚胺前驱体中引入Fe3O4纳米粒子,经高温热解炭化制备了杂化功能炭膜.采用XRD、TEM和VSM等分析方法对所制备的功能炭膜进行表征,并探讨了Fe3O4纳米粒子的掺杂量及炭化终温对功能炭膜气体分离性能的影响.结果表明,Fe3O4纳米粒子在热解炭化过程中发生了物相形态的改变,并对前驱体起到了催化石墨化的作用,使功能炭膜具有类石墨片层和乱层炭的两种炭结构形态,同时具有磁性.气体渗透实验表明,掺杂Fe3O4纳米粒子使所制备的功能炭膜具有"分子筛分"的分离特征,提高了炭膜的气体渗透性能,特别是对小分子气体H2的渗透性提高了61倍,H2/CO2的分离选择性也明显得到改善.Fe3O4的掺杂量和炭化终温对炭膜的气体分离性能有显著影响.Fe3O4添加量为20wt%的功能炭膜对H2、CO2、O2、N2和CH4等纯气体的渗透系数分别为15476、4385、1565、193和114Barrers[1Barrer=1×10-10cm3(STP).cm/(cm2.s.cmHg)].  相似文献   

11.
通过在炭膜前驱体中添加纳米二氧化钛-P25粒子制备了P25杂化炭膜,并采用TG、SEM、TEM、XRD、气体渗透性能测试等表征方法探讨添加P25纳米粒子对杂化炭膜的热解过程、微观结构及气体渗透性能的影响。结果表明,P25纳米粒子的加入提高了聚合物膜的热稳定性;P25粒子因团聚形成一定的堆积间隙并与炭基体形成了界面孔隙。气体渗透性能测试表明,P25的引入显著地提高了气体渗透通量,并随添加量增加提高而更加明显,气体选择性略有降低,分离机理仍以分子筛分为主;炭化终温的提高可以显著增加气体选择性,但气体渗透性有所降低。当P25添加量为20wt%,炭化终温为700℃时,所制备的杂化炭膜其H2、CO2、O2、N2、CH4气体渗透性分别为1769.2、1558.6、410.2、55.5和26.8 Barrer。  相似文献   

12.
以ZIF-8为掺杂剂,通过对混合基质聚合物膜高温炭化制备了混合基质炭膜.通过XRD、SEM、N2吸附等表征方法探究了ZIF-8高温热解前后微观形貌和孔结构特征对炭膜微孔结构和炭结构的影响,并考察了ZIF-8掺杂量与炭化温度对混合基质炭膜C3H6/C3H8渗透分离性能的影响.结果表明,ZIF-8经550℃热处理后仍能够部分保持其微观形貌和孔结构,同时ZIF-8热解衍生多孔炭的引入增加了炭膜具有筛分功能的极微孔含量,因而显著提高了混合基质炭膜对C3H6/C3H8的分离选择性.在ZIF-8掺杂质量分数1%和炭化温度550℃下,所制备ZIF-8混合基质炭膜的C3H6渗透系数高达174 Barrer, C3H6/C3H8分离选择性为14.4,与未掺杂的纯炭膜相比(C  相似文献   

13.
针对现有气体分离炭膜存在的渗透速率低等问题, 提出并设计在PMDA-ODA型聚酰亚胺前驱体中掺杂碳纳米管, 经高温热解后制备炭/碳纳米管杂化膜. 分别采用透射电镜(TEM)、X射线衍射分析(XRD)和气体渗透实验对炭/碳纳米管杂化膜的微观结构和分离性能进行表征. 实验结果表明, 在PMDA-ODA型聚酰亚胺前驱体中掺杂碳纳米管后, 碳纳米管与炭基体之间形成明显的“界面间隙”, 打破了原有炭膜中由乱层炭构成的无序微孔结构, 重新构建了杂化炭膜的孔隙结构. 与纯炭膜相比, 杂化炭膜的气体渗透速率大幅增加, 其中O2的渗透速率增大接近4倍(达到1576 Barrer), 而O2/N2的分离选择性仅降低17%.  相似文献   

14.
以新型聚醚酰业胺预聚体一聚酰胺酸为前驱体,在空气中进行预氧化处理后经700℃炭化制备出炭膜.采用红外光谱(FTIR)、元素分析(EA)、X射线衍射(xRD)和气体渗透等测试手段对400℃、460℃和480℃温度下所制预氧化膜的化学结构、炭膜的微结构和气体分离性能进行了表征.结果表明:预氧化阶段,聚合物链发生了热分解和氧化交联反应,温度越高,热分解和氧化程度越高.炭化后,预氧化膜的交联结构演变成无定彤碳结构.预氧化膜的结构差异导致了炭膜的孔结构的不同,从而对炭膜的气体分离性能产生重要影响,其中经460℃预氧化处理后所制炭膜的O2渗透系数可达8.2×10-13(m3(STP)·cm)/(m2·s·Pa),O2/N2选择性达14.1.  相似文献   

15.
气体渗透性低、机械强度差是炭膜产业化道路上的两大难题.研究发现,根源在于炭膜的蠕虫状孔道结构与均质炭膜的特有性质.为了解决炭膜渗透性低的问题,通过选择适宜的聚合物前驱体的分子结构与空间构型结合填充纳米粒子为功能基团等手段,实现对炭膜蠕虫状孔结构有效地调控与重新构建.在保证高选择性的条件下,不仅使炭膜的气体渗透性能提高了2个数量级以上,而且还使炭膜对某些气体具有较高分离选择性的功能化效果.为了改善炭膜的机械强度,将自主研发的廉价煤基炭膜支撑体与前驱体相复合,采用简单的制膜工艺,制备得到复合性能好、气体分离性能高的复合炭膜.  相似文献   

16.
模板法制备沥青烯基有序结构中孔炭   总被引:2,自引:2,他引:0  
以煤炭直接液化工艺过程的副产物--沥青烯为碳源,中孔硅分子筛SBA-15为模板,采用模板炭化法制备了具有规则结构的中孔炭.制备过程包括利用溶剂夹带法将沥青烯填充到模板孔道内,炭化模板孔道内的沥青烯以及脱除模板等步骤.利用扫描电镜、透射电镜、粉末X射线衍射仪对产品的微观形貌和结构进行了分析;测定了材料的抗氧化性能、导电性能以及对N2的吸附特性.结果表明:产品具有对模板结构反转复制的规则结构,其比表面积为562m2/g,孔容为0.566cm3/g,孔尺寸呈单分布,平均孔径为3.57nm;此外,材料具有良好的抗氧化性能,空气环境下300℃处理后样品仍保持规则的孔结构形态;其平均电阻率为0.16Ω*cm左右,属半导体材料导电性能范畴.  相似文献   

17.
以正硅酸乙酯为模板硅源,间苯二酚—甲醛凝胶为炭前驱体,采用同步合成模板炭化(SSTCM)法制备了具有可控结构的中孔炭材料。炭材料的比表面积可达1500m^2/g,平均孔径在3nm~10nm之间。经过酸催化水解预处理的二氧化硅模板前驱体溶液与间苯二酚—甲醛溶液混合,碱性条件下使两者的溶胶凝胶反应同步发生,得到有机,无机凝胶混合物。再经炭化、HF去模,制得SSTCM炭材料。N2等温吸脱附研究表明,与炭前驱体聚合物同步合成的结构可调的二氧化硅模板,导致了SSTCM炭材料可控中孔结构的形成。循环伏安研究表明,采用这种同步合成模板炭化法制备的SSTCM炭材料质量比容量达270F/g,炭材料具有的典型中孔结构使其可能成为一种理想的双电层电容器电极材料。  相似文献   

18.
以糠醇(FA)、4,4-双马来酰亚胺二苯基甲醇(BM)、BM与二乙烯基苯共聚物(BM-DVB)和蔗糖(S)为炭前驱体,硅胶为硬模板制备了六种纳米孔炭。在氦气气氛中800℃~1 000℃炭化30 min,炭化后利用质量分数40%HF脱除模板。利用元素分析、氮气吸附、热分析和漫反射红外表征产物的孔结构和化学结构及它们对多孔炭热性能的影响。结果表明,前驱体对多孔炭的性能有一定的影响。前驱体的化学结构和热处理条件对炭的孔隙结构,亲水性和热稳定性都有影响。最稳定的产物中含有氮和磷元素。  相似文献   

19.
炭膜具有优异的热稳定性、化学稳定性和气体分离性能.以聚酰亚胺中空纤维膜为前驱体,经过Tg附近退火预处理(250、300和350℃),进而高温炭化制备高性能中空纤维炭膜,研究了预处理条件对炭膜结构和气体分离性能的影响.结果表明,当退火预处理温度升高时,中空纤维炭膜的结构更加致密,其CO2/CH4和H2/CH4选择性提高,气体通量下降.尤其是当退火预处理温度为350℃时,与未经预处理的中空纤维炭膜相比,其CO2/CH4和H2/CH4选择性分别提高了98%和195%.同时,研究了渗透温度和压力对气体分离性能的影响,采用HIM(氦离子电镜)、FTIR和XRD对中空纤维炭膜的结构进行了表征.  相似文献   

20.
掺氮多孔炭材料在电化学能量储存和转化方面具有良好的应用前景.可控的氮原子掺杂与孔结构设计对提高其性能起着重要作用.本工作利用无溶剂纳米铸造法,以甘氨酸(Gly)为单一前驱体、以SBA-15为硬模板,制备了掺氮有序介孔炭材料(N-OMCs).甘氨酸在SBA-15孔道内的限域热解对提高碳产率、氮掺杂量以及构筑双介孔结构非常...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号