首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为改善β型Ti-Nb-Zr合金的生物活性,添加20wt%的焦磷酸钙(CPP)生物陶瓷,利用放电等离子烧结技术制备20CPP/Ti-35Nb-7Zr生物复合材料。借助XRD、SEM及力学测试方法等研究不同烧结温度(1 000~1 200℃)下复合材料的微观组织及力学性能,揭示其组织演变对力学性能的影响机制。结果表明:20CPP/Ti-35Nb-7Zr复合材料主要由β-Ti相基体、少量残留α-Ti相及金属-陶瓷相(CaTiO_3、Ti_2O、CaO、CaZrO_3和TixPy)组成;随着烧结温度升高,复合材料中β-Ti相和金属-陶瓷相逐渐增多;金属与陶瓷之间的剧烈反应导致金属-陶瓷相的形态结构发生变化,复合材料中金属-陶瓷相从颗粒状析出物演变成连续网状组织,起到割裂基体的作用。20CPP/Ti-35Nb-7Zr复合材料的压缩弹性模量和抗压强度随着烧结温度的升高而增大,其中压缩弹性模量从64.0GPa增加至71.4GPa,金属-陶瓷相形态结构变化起主导作用。因此,控制20CPP/Ti-Nb-Zr复合材料中金属-陶瓷相的形态结构将有利于改善其力学性能。  相似文献   

2.
为了改善Ti-Nb-Zr合金的生物活性,采用放电等离子烧结(SPS)技术制备了不同羟基磷灰石(HA)含量的Ti35Nb7Zr-xHA(x=0、5、10、20(质量分数,%))生物复合材料,研究了HA含量对复合材料微观组织、力学性能及体外生物活性的影响。结果表明,复合材料主要由β-Ti、α-Ti、HA及陶瓷相(Ti_xP_y、CaTiO_3、Ti_2O、CaO)组成;HA含量增加会导致β-Ti减少而α-Ti和陶瓷相明显增多;与Ti-35Nb-7Zr合金(E:45GPa,σ:1 736 MPa)相比,HA含量为5%和10%时,复合材料的抗压强度分别为1 662MPa和1 593MPa,弹性模量分别为48GPa和49GPa,综合力学性能与Ti-35Nb-7Zr合金接近,展现出良好的力学性能,而过高的HA含量(20%)会导致复合材料弹性模量明显升高(E:55GPa)、抗压强度急剧下降(σ:958 MPa),复合材料的力学性能降低;体外生物活性实验表明,加入10%HA的复合材料在人工模拟体液(SBF)中浸泡7d后表面生成了大量的类骨磷灰石层,与Ti-35Nb-7Zr合金相比,其显示出更优异的体外生物活性。  相似文献   

3.
为了改善Ti-13Nb-13Zr医用钛合金的生物活性与细胞相容性,利用放电等离子烧结(SPS)技术制备了Ti-13Nb-13Zr合金和羟基磷灰石(HA)含量5wt%的5HA/Ti-13Nb-13Zr复合材料并进行退火处理,研究了两种材料的显微组织、力学性能、表面润湿性、体外矿化行为及细胞增殖与凋亡等生物学性能。结果表明:合金主要由β-Ti和α-Ti相组成,复合材料由β-Ti、α-Ti、HA相及少量陶瓷反应相(Ca3(PO4)2、CaZrO3、CaO)组成,退火后部分初生α-Ti转变为β-Ti且组织更均匀,HA的加入会使得晶粒细化;退火后两种材料抗压强度、屈服强度、屈强比和弹性模量均略微下降;HA的加入提高了复合材料亲水性、类骨磷灰石形成能力、细胞增殖率并降低了细胞凋亡率;综合分析,退火后的5HA/Ti-13Nb-13Zr复合材料抗压强度、屈服强度和弹性模量分别为(1 744±9) MPa、(1 493±12) MPa和(43±1.6) GPa,具有优异的类骨磷灰石形成能力,同时细胞增殖率达到99.1...  相似文献   

4.
以Ti-30Nb-10Ta-5Zr合金为基本组成,改变Ta的添加量(质量分数,下同)为:O%,5%,15%,20%,配制4种Ti-30Nb-xTa-5Zr系合金;改变Zr的添加量(质量分数,下同)为:0%,3%,7%,10%,配制4种Ti-30Nb-10Ta-xZr系合金,连同基本组成合金共9种,对比进行了组织和性能评价.  相似文献   

5.
采用放电等离子烧结技术制备表面多孔Ti-羟基磷灰石(HA)/Ti-Ag生物梯度复合材料,研究了不同HA含量对复合材料微观结构、界面结合、表面孔隙特征、力学性能及体外生物活性的影响及机制。结果表明,表面多孔Ti-HA/Ti-Ag复合材料中间基体合金主要由α-Ti和Ti2Ag相组成,表面多孔层主要由α-Ti和HA相组成,同时还存在少量CaO、CaTiO3、Ti5P3等反应相;表面多孔Ti-HA/Ti-Ag复合材料中间基体与表面多孔层形成稳定的冶金结合,但随着HA含量增加,反应相增多,界面结合变差,表面孔隙率和平均孔径呈增大趋势,导致平均抗压强度减小且弹性模量降低,因此过高的HA含量会导致材料力学性能下降;体外生物活性实验表明,表面多孔Ti-HA/Ti-Ag复合材料在人工模拟体液中浸泡7天后表面生成大量类骨磷灰石层,并且随着HA含量的增大,磷灰石形成能力明显增强。   相似文献   

6.
张帅  李伟  张忠全  马琳  白娇娇 《材料导报》2016,30(2):42-45, 60
合金多孔化是有效降低材料弹性模量的方式之一,采用添加造孔剂的元素粉末冶金法制备了新型医用多孔Ti-14Mo-2.1Ta-0.9Nb-7Zr合金,通过扫描电镜、阿基米德法、X射线衍射和压缩力学性能测试的方法研究了不同造孔剂用量和粒径尺寸对合金形貌特征、孔隙率、物相组成及力学性能的影响规律。结果表明:该方法制备所得多孔Ti-14Mo-2.1Ta-0.9Nb-7Zr合金为近β型钛合金;随着造孔剂用量增加,平均孔径无变化,孔隙率呈线性增长,弹性模量和抗压强度减小,其中弹性模量的变化满足线性关系;随着造孔剂粒径尺寸增加,平均孔径增大而孔隙率基本不变,抗压强度和弹性模量减小;添加20%(质量分数)粒径尺寸为125~200μm的NH4HCO3造孔剂制备多孔Ti-14Mo-2.1Ta-0.9Nb-7Zr合金,于1300℃烧结4h孔隙率达到38.9%并含有贯穿孔结构,抗压强度达到405 MPa,而弹性模量为9.19GPa,能满足医用植入材料的要求。  相似文献   

7.
对Ti-13Nb-13Zr钛合金板材固溶和时效热处理的组织变化进行了分析,结果表明,为了得到细小等轴β晶粒,推荐固溶处理制度:700℃/0.5h、水冷或空冷。为了保留过冷β相结构,为后续的时效强化做准备,推荐固溶处理工艺为800℃/0.5h、水冷。为使Ti-13Nb-13Zr钛合金达到良好的组织匹配,并且避免产生恶化合金性能的ω相,推荐热处理制度:固溶800℃/0.5h(水冷)+时效处理560℃/8h。本结果也为Ti-13Nb-13Zr钛合金技术开发和专业生产提供参考。  相似文献   

8.
本实验在β单相区分别对Ti-40Al-8Nb-0. 5B及Ti-40Al-8Nb-1B合金进行了热变形,研究了两种合金中硼化物的取向行为及其对α相的影响。结果表明:热变形及硼含量显著影响硼化物的分布状态。未变形时,两种合金中的硼化物均为随机分布;变形后,Ti-40Al-8Nb-0. 5B合金中硼化物呈现出强烈的[100]丝织构,而Ti-40Al-8Nb-1B合金中硼化物取向随机,这是由变形过程中硼化物的刚性旋转及其相互作用所造成的。经历β→α相变后,Ti-40Al-8Nb-0. 5B合金α相呈现出1120和1010双丝织构,而Ti-40Al-8Nb-1B合金α相取向随机,这归因于硼化物、β相以及α相之间的组织遗传性。本研究可为β型γ-Ti Al合金片层取向控制提供新的思路。  相似文献   

9.
通过室温下拉伸实验研究了Ti-14Nb-4Sn和Ti-16Nb-4Sn(at.%)合金的超弹性。发现锻造态和400℃冰水淬火态的Ti-16Nb-4Sn合金超弹性良好,通过4%变形量循环拉伸三次即可获得完全的超弹性;而400℃冰水淬火态的Ti-14Nb-4Sn合金通过3%变形量循环拉伸两次即可完全回复。Ti-14Nb-4Sn合金和Ti-16Nb-4Sn合金均以700℃冰水淬火态断裂延伸率为最大,分别为14.42%和12.02%。锻造态Ti-14Nb-4Sn合金的马氏体逆相变回复温度As为134.8℃。XRD分析结果表明室温下Ti-16Nb-4Sn合金的组织为β相和+α″马氏体相;而Ti-14Nb-4Sn合金的室温组织除β和α″外,还存在α相。  相似文献   

10.
一、前言 Ti_3Al基合金(如Ti-25Al-10Nb-3V-1Mo at%)是未来用于650~700℃具有发展前途的新一代高温结构材料。其微观组织与力学性能的关系,如拉伸、蠕变、疲劳和断裂韧性等,均得到了广泛的研究。研究表明,Ti_3Al基合金的形变与断裂机制不仅与形变温度有关,而且与环境因子密切相关。然而,目前较少报道Ti-25Al-10Nb-3V-1Mo合金在不同温度下和不同形变环境中的断裂机制和形变行为。本论文通过研究Ti-25Al-10Nb-3V-1Mo合金在25~980℃温度范围的拉伸形变行为和在不同拉伸环境(真空或空气)下的断裂方式,探讨Ti-25Al-10Nb-3V-1Mo合金的形变和断裂机制。 二、试验方法 本研究采用的合金为Ti-25Al-10Nb-3V-1Mo(at%),其化学成分(重量百分比)为14.4Al,19.3Nb,3.5V,2.2Mo,0.100,0.018N,其余为Ti。经真空自耗电极电弧炉熔炼的铸锭在开坯,α_2+β两相区锻造和α_2+β两相区热处理后,制成φ5×25mm拉伸试样。在  相似文献   

11.
高铬 Nb Si金属间化合物基复合材料的定向凝固组织   总被引:1,自引:0,他引:1  
采用液态金属冷却定向凝固技术制备了高铬 Nb-Si金属间化合物基复合材料, 分析了不同熔化温度和凝固速度下复合材料的相组成及组织特征。结果表明: Nb-22Ti-17Cr-16Si-2Al-2Hf(原子分数)合金相组成为Nbss、 α-Nb5Si3、 Laves相NbCr2和少量的(Nbss+ Nb5Si3)共晶, 定向凝固没有改变复合材料的相组成。熔化温度为1550 ℃时, Nbss相呈颗粒状, Nb5Si3相呈随机分布的块状或短板条状; 随着熔化温度的提高, Nbss转变为枝晶状且沿轴向定向生长, Nb5Si3相转变为有一定定向效果的长板条状。随着凝固速度的增大, 组织明显细化且定向效果增强, 凝固速度为18 mm/min时, Nb5Si3呈定向效果良好的细长条状。   相似文献   

12.
以硝酸锆、硝酸镧、硝酸钇和柠檬酸为原料,原位合成了La2Zr2O7、氧化钇稳定氧化锆(YSZ)及其La2Zr2O7-YSZ复合材料。采用X射线衍射和拉曼光谱对样品进行分析和表征,研究La2Zr2O7、YSZ和La2Zr2O7-YSZ复合材料的物相组成与高温热稳定性。结果表明:合成的La2Zr2O7和YSZ均为单一纯相。在1 200℃煅烧6 h条件下合成的系列复合材料(物质的量比n(La2Zr2O7)∶n(YSZ)=1∶8~10∶1)中均未发现单斜ZrO2相和其他化合物的生成。在1 400℃煅烧24 h条件下合成的LZYZ11中出现单斜ZrO2相,此时La2Zr2O7对YSZ的稳定效果不大。  相似文献   

13.
将聚磷酸钙(CPP)与生物羟基磷灰石(HA)复合制备出非晶态CPP/晶态β--TCP新型双相磷酸钙生物陶瓷, 研究了CPP的含量和煅烧温度对其相组分、烧结性能和力学性能的影响。 结果表明, 高温下HA与CPP反应生成β--磷酸三钙(β--TCP)和水。 当初始原料中CPP的含量(质量分数, 下同)高于10%时, 可制备出新型双相磷酸钙生物陶瓷CPP/β--TCP;当CPP的含量低于10%时, 可制备出以HA/β--TCP为主相的复相陶瓷。 在CPP含量为0--15%、煅烧温度高于1250℃或CPP含量为15%--30%、煅烧温度为1150--1250℃的条件下,都可制备出抗压强度较高的复相磷酸钙陶瓷。  相似文献   

14.
Ti,Zr,Nb,Ta等金属具有优越的生物相容性,被广泛应用到生物材料中.日本学者Yoshimitsu Okazaki等人研究了铸造Ti-15Zr-4Nb-4Ta合金、Co-Cr-Mo和Ti-6Al-7Nb合金的室温力学性能和疲劳强度,并对Ti-15Zr-4Nb-4Ta合金制作的假牙牙托进行了超过1年的临床观察.  相似文献   

15.
采用悬浮熔炼-水冷铜模吸铸法制备了(Ti0.5Ni0.5-xZrx)80Cu20(x=0,0.02,0.04,0.06和0.08)。通过对Zr的添加量的控制制备具有组织连续梯度的非晶复合材料,研究其组织和力学行为及微量Zr的添加对此非晶复合材料的组织和力学性能的影响。结果表明,凝固过程的温度梯度决定了复合材料的组织梯度,由表及里,主要为非晶相、马氏体相和奥氏体树枝晶相。铸态非晶基体上析出了B2-Ti(Ni,Cu)过冷奥氏体相和B19’-Ti(Ni,Cu)热诱发马氏体相,加载断裂后应力诱发马氏体相变,马氏体衍射峰比铸态增强且马氏体择优取向。随着Zr的不断添加,此系列非晶合金非晶形成能力先提高后降低,奥氏体含量不断下降,相变诱发塑性减弱,从而塑性逐级递减,强度先升高后降低。  相似文献   

16.
将聚磷酸钙(CPP)与生物羟基磷灰石(HA)复合制备出非晶态CPP/晶态β-TCP新型双相磷酸钙生物陶瓷,研究了CPP的含量和煅烧温度对其相组分、烧结性能和力学性能的影响.结果表明,高温下HA与CPP反应生成β-磷酸三钙(β-TCP)和水。当初始原料中CPP的含量(质量分数,下同)高于10%时,可制备出新型双相磷酸钙生物陶瓷CPP/β-TCP;当CPP的含量低于10%时,可制备出以HA/β-TCP为主相的复相陶瓷。在CPP含量为0-15%、煅烧温度高于1250℃或CPP含量为15%-30%、煅烧温度为1150-1250℃的条件下,都可制备出抗压强度较高的复相磷酸钙陶瓷。  相似文献   

17.
采用真空水冷铜坩埚感应熔炼炉及石墨型离心铸造工艺,制备了Nb丝连续增强Ti-48Al-2Cr基复合材料.测试了该复合材料的显微结构、界面结合形貌与力学性能.研究结果表明:Nb丝与基体结合良好,界面处元素发生了相互扩散,界面层组织为Ti2 AlNb相,α2-Ti3 Al相及γ-TiAl相,硬度呈梯度分布,在界面层处最高为...  相似文献   

18.
戚玉敏  何云  崔春翔  刘双进  王会芬 《功能材料》2006,37(10):1638-1642
用仿生化学方法制备钛酸钾生物薄膜/Ti-15Mo-3Nb生物复合材料,然后通过模拟体液培养试验、动态凝血试验及体外细胞培养试验对Ti-15Mo-3Nb和钛酸钾生物薄膜/Ti-15Mo-3Nb生物复合材料的体外生物相容性进行研究,以验证钛酸钾作为一种新型的生物活性涂层材料的可行性.对比试验的结果表明:(1)在模拟体液培养实验中,Ti-15Mo-3Nb表面未见钙磷沉积,表现为生物惰性,而呈多孔网状结构的钛酸钾生物薄膜具有很强的钙磷吸附能力,表现出很好的生物活性;(2)以动态凝血时间为指标,钛酸钾生物薄膜>Ti-15Mo-3Nb,表现出良好的血液相容性;(3)细胞培养实验表明,二者均具有良好的细胞相容性,但在细胞培养初期钛酸钾生物薄膜具有更好的细胞附壁生长趋势,这将有利于损伤部位的早期愈合.钛酸钾生物薄膜/Ti-15Mo-3Nb生物复合材料表现出更好的生物相容性和生物活性.  相似文献   

19.
目的 研究晶化分数对原位晶化钛基非晶复合材料热塑性成形能力的影响,优化Ti基非晶复合材料的制备和设计。方法 首先采用电弧熔炼和铜模铸造制备出成分为Ti45Zr20Be29Fe6和Ti45Zr20Be29Cu6的非晶合金,通过连续加热DSC及等温DSC研究其晶化动力学,然后根据得到的等温晶化规律制备不同晶化体积分数的非晶复合材料,并通过静态热机械分析(TMA)表征其热塑性成形能力。结果 Ti45Zr20Be29Fe6在406 ℃与411 ℃时,等温晶化过程为形核率随时间增大的形核长大过程;Ti45Zr20Be29Cu6在370,375,380,385 ℃时,等温晶化过程为形核率随时间减小的形核长大过程;XRD物相分析表明,等温处理后Ti45Zr20Be29Fe6和Ti45Zr20Be29Cu6的析出相分别为β-Ti和α-Ti2Zr;两种内生复合材料的热塑性成形能力均随晶化相体积分数的增大而降低,且Ti45Zr20Be29Fe6基体复合材料的热塑性成形能力比以Ti45Zr20Be29Cu6为基底的复合材料更好。结论 晶化分数增加会降低钛基非晶复合材料的热塑性成形性能,且其影响程度与复合材料的基体和晶体第二相的特性有关。  相似文献   

20.
在高真空条件下采用Ti-35Zr-35Ni-15Cu(质量分数/%)钎料对SiC陶瓷进行了钎焊连接,研究了接头界面组织的形成过程以及工艺参数对接头性能的影响。结果表明:钎料与SiC陶瓷发生了复杂的界面反应,生成了多种界面产物。当钎焊温度为960℃,保温时间为10min时,SiC陶瓷侧形成了连续的TiC和Ti5Si3+Zr2Si层,同时Ti5Si3+Zr2Si向钎缝中心生长呈长条状。SiC陶瓷到接头钎缝中心的显微组织依次为:SiC/TiC/Ti5Si3+Zr2Si/Zr(s,s)/Ti(s,s)+Ti2(Cu,Ni)/(Ti,Zr)(Ni,Cu)。钎焊温度为960℃,保温时间为30min时,长条状的Ti5Si3+Zr2Si贯穿了整个接头。钎焊接头强度随着钎焊温度的升高和钎焊时间的延长都呈现先增大后减小的趋势。当钎焊温度为960℃,保温时间为10min时,接头的剪切强度最高,达到了110MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号