首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用钛酸四正丁酯(TBOT)、二苯基二甲氧基硅烷(DPS)为原料,分别与两种不同烷基链长度的硅烷(正己基三甲氧基硅烷(C6TMS)和十二烷基三甲氧基硅烷(C12TMS))通过水解缩聚反应,制备了两种含钛有机硅杂化溶胶BTS和CTS。实验研究了TBOT含量和烷基链长度对涂层热稳定性、耐热老化、折射率、透过率等性能的影响。结果表明,所有涂层在可见光区的透过率均在98%以上;通过调节Ti含量,BTS与CTS系列涂层的折射率分别在1.5584~1.6137和1.5721~1.6515内连续可调。热重分析与耐热老化测试结果显示,杂化涂层的热稳定性和耐黄变性能与烷基基团碳链长度成正比,与Ti含量成反比。文章还对引起杂化涂层黄变的机理进行了初步探讨。  相似文献   

2.
采用水性纳米ZrO_2溶胶与γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)为原料,通过溶胶-凝胶方法,制备了水性有机无机杂化防腐涂层。实验研究了ZrO_2/GPTMS摩尔比对涂层耐盐雾性能及电化学性能的影响。实验结果表明,涂层的耐腐蚀性能随着摩尔比的增加呈现先增强后下降的趋势,其中1∶5涂层的耐腐蚀性能最强,耐盐雾时间达到1 500h,是未涂覆涂层样板耐盐雾时间的20倍左右,电化学交流阻抗为107Ω·cm2,腐蚀电流密度为5.84×10-10 A/cm2。从1∶5涂层的SEM照片发现,涂层中纳米ZrO_2粒子分散均匀,无团聚现象。另外,TG分析表明,涂层的热稳定性能随着摩尔比的增大而增加。  相似文献   

3.
SiO2/有机硅杂化涂层材料的制备与性能研究   总被引:1,自引:0,他引:1  
韩磊  张秋禹 《材料保护》2007,40(12):7-9
采用溶胶.凝胶法制备出两相间以共价键结合的透明状SiO2/有机硅杂化涂层材料,并通过红外分析(FTIR)、热分析(TG)、示差扫描量热分析(DSC)、透射电镜(TEM)、分光光度计、溶剂浸提等方法对杂化材料的结构和性能进行了分析和测试。结果表明,所制备的杂化涂层材料没有出现相分离,且具有良好的透光性和热稳定性,可用作保护涂层和耐温涂层。  相似文献   

4.
镁合金表面SiO2/有机硅杂化涂层的制备及其耐腐蚀性能   总被引:1,自引:0,他引:1  
为了提高镁合金的耐腐蚀性能,先对其表面进行磷化,再采用溶胶-凝胶法在磷化膜表面制备SiO2/有机硅杂化涂层。采用电化学工作站测试涂层的极化曲线,并用金相显微镜观察了其腐蚀前后的表面形貌。结果表明:磷化膜表面的杂化涂层光滑、黏附性优良,硅溶胶与有机硅树脂形成了有机无机网络连接;磷化膜表面涂覆有机硅树脂和杂化涂层都可以显著提高镁合金的耐腐蚀性能,但后者的效果更加明显。  相似文献   

5.
光固化有机硅/纳米SiO2杂化材料的制备和表征   总被引:2,自引:0,他引:2  
以双碳羟基硅油(K-50)、异佛尔酮二异氰酸酯(1PDI)和丙烯酸羟乙酯(HEA)为原料,合成光敏性有机硅树脂PSUA;以PSUA为有机相,溶胶-凝胶法制备的硅溶胶为无机相,以γ-甲基丙烯酰氧丙基三甲氧基硅烷(TMSPM)为两相间的偶联剂,制备了光固化有机/无机杂化体系.对反应产物和硅溶胶进行了红外光谱(FT-IR)分析,用扫描电镜(SEM)观察了光固化膜断面形貌,用铅笔硬度法测定了光固化膜硬度.结果表明合成了预期产物,光固化杂化体系中纳米SiO2分散比较均匀,光固化膜具有很好的韧性和较高的硬度.  相似文献   

6.
高导热环氧/有机硅杂化封装胶的制备与性能   总被引:1,自引:0,他引:1  
以γ-缩水甘油醚氧丙基三甲氧基硅烷为原料,通过水解缩聚制备出有机硅树脂,采用不同尺寸的改性氧化铝填充环氧/有机硅树脂基体以改善其耐热性能,并考察其力学性能、导热性能。结果表明,合成的有机硅树脂能提高封装胶的热分解温度,其热分解温度比环氧树脂高35.66℃。所制备封装胶的导热系数为1.01 W/(m.K),相比单一环氧树脂其导热性能提高了约5倍,其粘接强度为10.27 MPa,该导热封装胶表现出良好的的综合性能,可用于微电子器件封装领域。  相似文献   

7.
通过水热法将纳米ZrO_2粒子负载于多壁碳纳米管(MWCNTs)表面,成功制备出ZrO_2-MWCNTs复合材料。采用FT-IR、XRD和SEM等方法对ZrO_2-MWCNTs复合材料的结构及形貌进行了表征,结果表明:ZrO_2粒子与MWCNTs通过化学键结合,有效负载于MWCNTs表面。将复合材料通过硅烷偶联剂(KH560)改性并共混分散于环氧树脂,分别制备出1%(wt,质量分数,下同)、3%和5%的ZrO_2-MWCNTs/环氧复合涂层,通过耐磨性测试及电化学交流阻抗谱评价了复合涂层的耐磨性和耐蚀性,结果表明:ZrO_2-MWCNTs高效分散于环氧树脂中,所制备复合涂层的机械性能及耐腐蚀性能均得到改善,并在ZrO_2-MWCNTs含量为3%时达到最大。  相似文献   

8.
以有机硅聚丙烯酸为成膜物质,经γ-(甲基丙烯酰氧)丙基三甲氧基硅烷(KH-570)表面化学改性后的纳米SiO_2粒子(经甲苯-2,4-二异氰酸酯活化)为无机填料,制备纳米SiO_2/有机硅聚丙烯酸复合防冰涂层。利用红外测试(FT-IR)、热失重(TGA)、扫描电镜(SEM)等研究了纳米SiO_2表面化学改性的机制,探讨了纳米SiO_2用量对涂层表面形貌、浸润性及涂层与冰层之间粘附性能的影响。结果表明,KH-570化学改性提高了纳米SiO_2在涂层中的分散性并有效地提高了涂层表面的疏水性能,当KH-570化学改性后的纳米SiO_2用量为8%时,涂层表面水的接触角为150°,呈现超疏水特性;涂层与冰层之间粘附力随纳米SiO_2用量增加呈现下降趋势,当纳米SiO_2用量为8%时,涂层与冰层之间的粘附力仅为树脂涂膜的30%左右。KH-570化学改性后的纳米SiO_2与低表面能有机硅聚丙烯酸树脂的协同效应使涂层具有了良好的疏水防冰性能。  相似文献   

9.
有机硅KH-570改性硅溶胶杂化涂层的制备研究   总被引:4,自引:0,他引:4  
以硅溶胶、γ-甲基丙烯酰氧丙基三甲氧基硅烷(KH-570)为原料,将低钠型碱性硅溶胶经强酸性阳离子交换树脂离子交换后,得到酸性硅溶胶,将其与KH-570按一定比例共混搅拌,通过KH-570在酸性条件下,水解缩聚,制得有机/无机杂化溶胶。以低碳钢Q235为基材,制备出硅烷偶联剂KH-570(MEMO)改性硅溶胶的杂化涂层。以FT-IR测试方法对其结构进行了表征,采用动电位极化曲线测试涂层的耐蚀性能。以光学显微镜、SEM观察涂层与碳钢裸片在腐蚀前后的表面形貌。研究结果表明:酸性硅溶胶与KH-570的水解缩聚产物通过共缩聚反应在碳钢表面形成带有有机基团的无机交联网络,基本骨架由Si-O-Si组成,经过100℃热处理,即可得致密涂层,涂层均匀、透明,无缺陷。电化学分析表明涂层形成物理屏障,为基体提供了优良的腐蚀保护。杂化涂层显现出良好的耐蚀性能。  相似文献   

10.
使用3种不同结构的聚醚胺(Jeffamine D230,D400,T403)分别固化环氧有机硅杂化树脂制备出有机-无机杂化涂层,并与3-氨丙基三乙氧基硅烷(APTES)固化的杂化涂层在机械性能、附着力和防腐蚀性能上进行了比较。研究结果表明,与APTES相比,聚醚胺可以提高杂化涂层的耐冲击高度1倍以上;聚醚胺D230和T403没有降低杂化涂层的硬度,而D400降低了杂化涂层的硬度;聚醚胺可以明显提高杂化涂层的初始附着力,同时大幅改善了涂层在老化过程中的"湿附着力"。采用盐雾实验和交流阻抗测试研究了杂化涂层的耐腐蚀性能,结果表明聚醚胺固化剂明显改善了APTES固化杂化涂层的易开裂性,并提高了杂化涂层的耐腐蚀性能。  相似文献   

11.
分别以粉末和溶胶-凝胶的方式向聚砜铸膜液中添加不同含量的SiO2,通过L-S相转换法制备SiO2/PSf杂化超滤膜.比较两种体系在不同SiO2含量下铸膜液的稳定性、黏度,及膜的微观结构、平均孔径、孔隙率、渗透性能和机械性能.结果表明,以溶胶-凝胶方式添加SiO2的铸膜液更加稳定,各方面性能更好.粉末添加下SiO2含量为2%时效果较好,水接触角为62°,纯水通量为141 L/(m2·h),对腐殖酸(Mr=370 000)的截留率为83.7%;溶胶-凝胶添加下SiO2含量为8%~10%时效果较好,水接触角为40°,纯水通量为182 L/(m2·h),对腐殖酸(Mr=370 000)的截留率为92%.  相似文献   

12.
以水性纳米Al_2O_3溶胶、γ-缩水甘油醚氧丙基三甲氧基硅烷(GPTMS)和甲基三甲氧基硅烷(MTMS)为原料,采用溶胶凝胶法,制备了水性纳米Al_2O_3/聚硅氧烷杂化镁合金防腐涂层。采用电化学交流阻抗技术、动电位极化曲线等手段研究了纳米Al_2O_3/(GPTMS+MTMS)摩尔比对涂层的耐腐蚀性能的影响。结果表明,涂层的耐腐蚀性能随着摩尔比的增大呈现先增强后下降的趋势,其中摩尔比为1∶5的杂化涂层耐腐蚀性能最佳,在3.5%Na Cl溶液中浸泡75 h后的交流阻抗值为6.68×10~6Ω/cm~2,腐蚀电流密度为4.19×10~(-9)A/cm~2,比裸露AZ31B基板的腐蚀电流密度降低了4个数量级。另外,涂层的扫描电镜照片显示,纳米Al_2O_3粒子均匀分散于涂层之中,粒子与有机物粘连紧密,无明显的团聚现象。  相似文献   

13.
以六亚甲基二异氰酸酯(HDI)或甲苯-2,4-二异氰酸酯(TDI)分别与不同相对分子质量的聚乙二醇(PEG)反应制备聚氨酯预聚体,再以预聚体对纳米SiO2进行表面接枝改性,将改性纳米SiO2分散到聚氨酯丙烯酸酯(PUA)中,光固化制备了PUA/SiO2纳米杂化涂层。场发射扫描电子显微镜和差示扫描量热法研究表明,与未改性的纳米SiO2相比,以聚氨酯分子链改性的纳米SiO2可显著提高与PUA树脂相容性及杂化涂层的热稳定性能。以摆杆阻尼试验仪及漆膜冲击器研究了杂化涂层的力学性能,研究表明通过调整预聚体的分子链结构可在提高杂化涂层硬度的同时,不损失涂层的冲击性能。  相似文献   

14.
将纳米ZrO_2-8wt%Y_2O_3和纳米ZrO_2-8wt%Y_2O_3中掺杂25wt%纳米CeO_2(CeO_2/ZrO_2-8wt%Y_2O_3)的两种粉末进行团聚处理,用等离子喷涂方法在GH30高温合金表面分别制备了两种材料热障涂层.用扫描电镜、透射电镜和X射线衍射仪对掺杂了25wt%纳米CeO_2的团聚体粉末和涂层的微观组织结构进行分析研究,测试比较了两种涂层在900、1100和1300℃时的热震性能,并试验了两种涂层在1050℃、保温100h后的抗氧化能力.结果表明,纳米粉末经团聚处理后为多孔的球形结构,掺杂纳米CeO_2涂层组成相为稳定的t相(t-ZrO_2、t-Zr_(0.82)Y_(0.18)O_(1.91)、t-Zr_(0.82)Ce_(0.18)O_2)和c相(c-CeO_2),并保持纳米组织结构,平均晶粒尺寸为45nm,其抗热震性能和氧化性能要高于纳米ZrO_2-8wt%Y_2O_3涂层.  相似文献   

15.
酪素基纳米TiO_2杂化乳液的制备及其涂层自清洁性能研究   总被引:1,自引:0,他引:1  
以酪素为基材,采用双原位法向其中引入己内酰胺、丙烯酸酯和纳米二氧化钛(TiO2)制备了可应用于皮革涂饰的酪素基纳米TiO2杂化乳液。并采用TEM、AFM、SEM以及紫外光催化分别对乳胶粒的结构、形貌和涂层自清洁特性进行了测试与表征。控制好前驱体的水解速率,获得稳定的酪素基纳米TiO2杂化乳液是本研究的技术挑战。实验主要考察了钛酸丁酯用量对乳液稳定性的影响。结果表明,当钛酸丁酯用量为2%时,杂化乳液稳定。涂层具有较为明显的自清洁性能。最后,探讨了酪素基纳米TiO2杂化乳液的乳胶粒及涂层自清洁性能的形成机理。  相似文献   

16.
纳米多孔SiO2/PI杂化薄膜的制备与性能研究   总被引:2,自引:0,他引:2  
采用碱催化正硅酸乙酯(TEOS)的溶胶-凝胶法与分子模板法相结合,通过旋转涂覆在硅衬底上制备了掺杂聚酰亚胺(PI)的纳米多孔SiO2薄膜,并利用差热分析(DSC-TGA)、红外吸收光谱(FTIR)、原子力显微镜(AFM)、X射线衍射(XRD)、台阶仪(Atom-ic-Profiler)等对薄膜的性能进行了分析表征.结果表明,所制备的SiO2/PI杂化多孔薄膜为多孔的无定型结构,具有较好的热稳定性及力学性能,一层膜和两层膜的平均孔径分别为68和72nm,厚度分别为917和1288nm.  相似文献   

17.
溶胶-凝胶法制备TiO_2-有机硅杂化涂层材料   总被引:3,自引:0,他引:3  
以钛酸丁酯(TBT)、二苯基二甲氧基硅烷(DPS)以及γ-(2,3-环氧丙氧)丙基三甲氧基硅烷(GPTS)为原料,采用溶胶-凝胶法,经涂膜、固化,制备了一系列TiO2-有机硅涂层材料.通过不同方法对杂化涂层的微结构、光学、热学和机械性质进行了表征.结果表明,在可见光范围内,所得杂化涂层材料的透过率在90%以上,且随着Ti含量的增加而减小.当Ti含量在10mol%~70mol%范围内,涂层折射率在1.54~1.64范围内可调.  相似文献   

18.
采用正硅酸乙酯(TEOS)和甲基三甲氧基硅烷(MTMS)为水解前驱体,γ-缩水甘油醚基丙基三甲氧基硅烷(GPTMS)为偶联剂,利用溶胶-凝胶法合成了有机-无机杂化环氧树脂,研究了纳米Al2O3对复合涂层性能的影响规律。结果表明,复合涂层的力学性能和耐腐蚀性能优于未添加纳米Al2O3的涂层。当添加15%的纳米Al2O3时,涂层硬度由4H提高到6H,耐盐雾时间从360h增加到620h。电化学分析显示,腐蚀电流密度由1.53×10-6 A/cm2下降到5.07×10-8 A/cm2,阻抗值从5.0×105Ψ·cm2增加至6.3×106Ψ·cm2。涂层在3.5%NaCl溶液中浸泡30d后,阻抗均保持在105Ψ·cm2以上。SEM分析表明,纳米Al2O3显著增强了涂层的致密性。  相似文献   

19.
以4,4’-二羟基二苯硫醚和9,9-二(4-羟苯基)芴,环氧氯丙烷为原料,在碱性条件下缩聚合成一种含S元素含芴结构的环氧树脂基体;通过溶胶-凝胶法,以四正丁醇锆为前驱体,以KH560为偶联剂,在基体上原位合成无机纳米ZrO2粒子,再经过热固化制备出一种具有高折射率的光学纳米杂化材料。通过红外光谱、1H核磁共振、X射线衍射、纳米粒度仪等手段对杂化材料的结构进行表征,并采用紫外分光光度仪、热重分析仪、椭圆偏振光谱仪对其性能进行了表征与测试。结果表明:ZrO2粒子在聚合物基体中合成,并以纳米粒度均匀分散,杂化材料具有很好的光学性能,在可见光范围内普遍保持90%以上的透过率,随着ZrO2含量的增加,杂化树脂折射率呈线性增加,ZrO2含量在19.33%时,折射率达到1.739。  相似文献   

20.
聚酰亚胺/纳米SiO2杂化膜的制备和表征   总被引:4,自引:0,他引:4  
以均苯四酸二酐、4,4'-二氨基二苯基甲烷和正硅酸乙酯为原料,采用溶胶-凝胶法制备聚酰亚胺/纳米SiO2杂化膜,利用FT—IR、XPS、AFM对杂化膜的制备过程及杂化膜的结构进行了表征.证实聚酰胺酸加热亚胺化较为完全,杂化膜中有SiO2粒子生成,并以纳米尺度均匀地分布于聚酰亚胺中.采用综合热分析仪对杂化膜的热性能进行了分析,结果表明杂化膜的热性能优于聚酰亚胺膜,其热分解温度比聚酰亚胺膜提高了17.8℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号