首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用固相反应制备的ZnO-Li_(2.2%)陶瓷靶和RF射频磁控溅射技术在Si(100)基片上制备了高度c轴择优取向的ZnO薄膜,XRD和电性能分析表明掺杂Li离子改善了ZnO靶材的结构和性能,同时研究了不同RF溅射温度对ZnO薄膜结构与取向的影响;然后采用sol-gel前驱单体薄膜制备方法,以ZnO为过渡层淀积PZT薄膜,探讨高度c轴(002)择优取向ZnO薄膜对PZT薄膜结构与性能的影响,实验发现在PZT/ZnO异质结构中,致密、均匀和高度c轴择优取向的ZnO可作为晶核,促进PZT钙钛矿结构转化、晶粒(110)择优取向生长,相应降低PZT薄膜的退火温度.  相似文献   

2.
制备了不同摩尔浓度Li 掺杂ZnO-Li0.022陶瓷靶、并用RF射频磁控溅射工艺在Si(100)基片上制备ZnO薄膜,研究了溅射温度、氧分压和溅射功率等对ZnO薄膜微结构、表面形貌和择优取向的影响.结果表明:Li 的最佳掺杂量(摩尔分数)为2.2%,RF溅射的最佳基片温度Ts小于300 ℃,氩氧气氛体积比为Ar:O2=20:5,溅射功率50~60 W;制备出的ZnO薄膜高度c轴(002)择优取向、均匀、致密,其绝缘电阻率ρ为4.12×108 Ω·cm,满足研制声表面波器件(SAW)的要求.  相似文献   

3.
采用射频磁控溅射法在(001)硅片上制备了ZnO薄膜,利用X射线衍射对薄膜的制备工艺进行了研究,结果表明,基板温度、溅射功率、氩氧比、总气压在一个较大的范围内变化时都可实现薄膜的c轴择优取向生长.随后对薄膜进行了空气退火并利用摇摆曲线表征薄膜的结晶质量,摇摆曲线的半高宽随退火温度的提高而减小,700℃退火后FWHM为2.5°.  相似文献   

4.
采用射频磁控溅射法,在单面抛光的Si(111)衬底上制备了PbTe薄膜,利用X射线衍射法分析了溅射工艺参数如溅射功率、溅射时间、衬底温度以及退火温度对PbTe薄膜的结晶质量的影响。结果表明:在溅射功率为30W,溅射时间为10 min,衬底未加热时制备的薄膜具有最好的〈100〉方向的择优取向性;退火处理可以改善薄膜的结晶质量,并且退火温度越高,薄膜的结晶质量越好。  相似文献   

5.
射频溅射ZnO薄膜的晶体结构和电学性质   总被引:2,自引:0,他引:2  
氧化锌 (ZnO)具有较宽的带隙 (3 1eV)和较低的亲合势 (3 0eV) ,有可能用作薄膜场发射阴极中的电子传输层材料。本文主要研究了用射频磁控溅射法制备ZnO薄膜时 ,衬底温度和溅射气氛对薄膜结晶状况和电学性质的影响。随着衬底温度的升高 ,薄膜结晶质量得以改善 ,晶粒择优取向 (0 0 2 )晶向 ,晶粒大小为 5 0~ 6 0nm。溅射时通入一定比例的氧气有助于提高薄膜的绝缘性和耐压性。当衬底温度为 180℃ ,溅射气氛为Ar O2 (2 5 % )时 ,ZnO击穿场强为 0 35V/ 10nm。  相似文献   

6.
RF磁控溅射法制备ZnO薄膜的XRD分析   总被引:10,自引:0,他引:10  
采用RF磁控溅射法,在玻璃村底上制备多晶ZnO薄膜,并对所制备的ZnO薄膜在空气气氛中进行了不同温度(350~600℃)的退火处理和600℃时N2气氛中的退火处理。利用X射线衍射分析了溅射参数如溅射功率、溅射氧分压、衬底温度以及退火处理对ZnO薄膜结晶性能的影响。结果表明,合适的衬底温度和退火处理能够提高ZnO薄膜的结晶质量。  相似文献   

7.
氧化锌(ZnO)具有较宽的带隙(3.1eV)和较低的亲合势(3.0eV),有可能用作薄膜场发射阴极中的电子传输层材料。本文主要研究了用射频磁控溅射法制备ZnO薄膜时,衬底温度和溅射气氛对薄膜结晶状况和电学性质的影响。随着衬底温度的升高,薄膜结晶质量得以改善,晶粒择优取向(002)晶向,晶粒大小为50-60nm。溅射时通入一定比例的氧气有助于提高薄膜的绝缘性和耐压性。当衬底温度为180℃,溅射气氛为Ar O2(25%)时,ZnO击穿场强为0.35V/10nm。  相似文献   

8.
采用射频磁控共溅射法在玻璃衬底上制备出了Al与Sn共掺杂的ZnO(ATZO)薄膜.在固定ZnO∶Al(AZO)靶溅射功率不变的条件下,研究了Sn靶溅射功率对ATZO薄膜的结晶质量、表面形貌、电学和光学性能的影响.结果表明,制备的ATZO薄膜是六角纤锌矿结构的多晶薄膜,具有c轴择优取向,而且表面致密均匀.当Sn溅射功率为5W时,330 nm厚度的ATZO薄膜的电阻率最小为1.49×10-3 Ω·cm,比AZO薄膜下降了22%.ATZO薄膜在400~900 nm波段的平均透过率为88.92%,禁带宽度约为3.62 eV.  相似文献   

9.
衬底温度对低功率直流磁控溅射ZnO薄膜特性的影响   总被引:2,自引:0,他引:2  
采用低功率直流反应磁控溅射法,在Si衬底上成功制备出了具有高c轴择优取向的ZnO薄膜,利用X射线衍射仪、荧光分光光度计研究了沉积温度对ZnO薄膜微观结构及光致发光特性的影响.结果表明,合适的衬底温度有利于提高ZnO薄膜结晶质量;在室温下测量样品的光致发光谱(PL),观察到波长位于440nm左右和485nm左右的蓝色发光峰及527nm左右微弱的绿光峰,随衬底温度升高,样品的PL谱中蓝光强度都明显增大,低功率溅射对其蓝光发射具有很重要的影响.综合分析得出440nm左右的蓝光发射应与Zni有关,485nm附近的蓝光发射是由于氧空位形成的深施主能级上电子跃迁到价带顶的结果,而527nm左右的较弱的绿光发射主要来源于导带底到氧错位缺陷能级的跃迁.生长温度主要是通过改变薄膜中缺陷种类及浓度而影响着ZnO薄膜的发光特性的.  相似文献   

10.
采用射频磁控溅射工艺,以Al掺杂ZnO(ZAO)陶瓷靶为靶材在石英玻璃基片上制备出具有优良光电性能的ZAO透明导电薄膜,研究了溅射功率对薄膜光电性能的影响。在不同溅射功率条件下制备的ZAO薄膜具有很好的c轴择优取向。较大功率溅射有利于薄膜晶粒尺寸的增大、电阻率降低。ZAO薄膜在可见光区的透过率平均值高达90%以上,受溅射功率影响不大。在340nm-420nm波长附近ZAO薄膜透过率急剧下降,呈现明显的紫外吸收边;高的溅射功率提高了ZAO薄膜的光学带隙宽度。  相似文献   

11.
采用直流磁控溅射法在室温水冷玻璃衬底上制备出高质量的掺钛氧化锌(ZnO:Ti)透明导电薄膜,研究了溅射功率对ZnO:Ti薄膜结构、形貌和光电性能的影响,结果表明,溅射功率对ZnO:Ti薄膜的结构和电阻率有显著影响.XRD表明,ZnO:Ti薄膜为六角纤锌矿结构的多晶薄膜,且具有c轴择优取向.当溅射功率为130W时,实验制备的ZnO:Ti薄膜的电阻率具有最小值9.67×10~(-5)Ω·cm.实验制备的ZnO:Ti薄膜具有良好的附着性能,可见光区平均透过率超过91%.ZnO:Ti薄膜可以用作薄膜太阳能电池和液晶显示器的透明电极.  相似文献   

12.
多组分掺杂ZnO陶瓷薄膜的射频磁控溅射法制备及表征   总被引:1,自引:0,他引:1  
采用传统陶瓷烧结工艺,制备了直径为50mm,厚度为3 mm的Bi2O3、Sb2O3、CO2O3、Cr2O3、MnO2掺杂的ZnO陶瓷靶,采用所制备的ZnO陶瓷靶和射频磁控溅射技术在Si(111)衬底上成功制备出了ZnO陶瓷薄膜,并研究了溅射功率和退火温度对ZnO陶瓷薄膜的微观结构和表面形貌的影响.结果表明:随着溅射功率...  相似文献   

13.
陈文  王兢  王敏锐 《功能材料》2005,36(10):1545-1548
ZnO薄膜的高阻特性在压电方面的应用极为重要.采用sol-gel法在Pt/Ti/SiO2/Si衬底上制备了c轴择优取向优良、电阻率高和化学计量比好的掺Li+(Li/Zn摩尔比分别为0、0.05、0.10、0.15、0.20)ZnO压电薄膜.研究了退火温度、掺杂浓度对ZnO薄膜晶体质量和电学特性的影响.XRD结果表明,ZnO薄膜的c轴择优取向度受退火温度和掺杂浓度的强烈影响;I-V测试表明,掺Li^+后薄膜的电阻率显著提高,当Li+掺杂浓度为0.10(Li/Zn摩尔比)、退火温度为600℃时其电阻率达109Ω@cm;XPS分析结果表明,Li+掺杂对ZnO薄膜中O1s和ZnL3M45M45的结合能以及Zn/O比都有一定的影响,掺杂后化学计量比更好.  相似文献   

14.
室温下射频磁控溅射制备ZnO:Al透明导电薄膜及其性能研究   总被引:1,自引:0,他引:1  
采用射频磁控溅射技术,在室温下,以ZnO:Al2O3(2%Al2O3(质量比))为靶材,在石英玻璃基底上,采用不同工艺条件制备了ZnO:Al(AZO)薄膜。使用扫描电子显微镜观察了薄膜的表面形貌,X射线衍射分析了薄膜的结构,四探针测量仪得到薄膜的表面电阻,轮廓仪测量了薄膜厚度,并计算了电阻率,最后采用分光光度计测量了薄膜的透过率;研究了溅射功率、溅射气压与薄膜厚度对薄膜电阻率及透过率的影响。结果表明:所制备的AZO薄膜具有(002)择优取向,并且发现薄膜厚度对薄膜的光电性能有明显影响,溅射气压和溅射功率对薄膜电学性能有较大影响,但是对薄膜透过率影响不大。当功率为1kW、溅射气压0.052Pa、AZO薄膜厚度为250nm时,其电阻率为8.38×10-4Ω·cm,波长在550nm处透过率为89%,接近基底的本底透过率92%。当薄膜厚度为1125 nm时薄膜的电阻率降至最低(6.16×10-4Ω·cm)。  相似文献   

15.
采用不同ZnS溅射功率,在钠钙玻璃(SLG)衬底上依次溅射Mo、ZnS、SnS及Cu,退火后制备出Cu_2ZnSnS_4(CZTS)薄膜。研究了溅射功率(50~140W)对ZnS薄膜和CZTS薄膜的微观形貌、微结构以及附着性的影响。结果表明,不同功率溅射的ZnS薄膜为(008)择优取向的纤锌矿六方晶系结构;功率较低时,ZnS薄膜结晶质量较差;随着功率从50W增加到140W,ZnS薄膜内的压应力增加了一个数量级;ZnS溅射功率低于80W或高于110W时,退火后的CZTS薄膜发生龟裂甚至脱落;ZnS溅射功率在80~110W时,退火后CZTS薄膜表面均匀平整;110W溅射后的CZTS薄膜出现较多的孔洞和二次相。采用80W功率溅射ZnS薄膜制备的CZTS/CdS太阳电池,开路电压达到572mV,短路电流密度为14.23mA/cm~2,光电转换效率为3.34%。  相似文献   

16.
采用射频磁控溅射技术,在室温下,以ZnO∶Al203(2%Al2O3(质量比))为靶材,在石英玻璃基底上,采用不同工艺条件制备了ZnO∶Al(AzO)薄膜.使用扫描电子显微镜观察了薄膜的表面形貌,X射线衍射分析了薄膜的结构,四探针测量仪得到薄膜的表面电阻,轮廓仪测量了薄膜厚度,并计算了电阻率,最后采用分光光度计测量了薄膜的透过率;研究了溅射功率、溅射气压与薄膜厚度对薄膜电阻率及透过率的影响.结果表明:所制备的AZO薄膜具有(002)择优取向,并且发现薄膜厚度对薄膜的光电性能有明显影响,溅射气压和溅射功率对薄膜电学性能有较大影响,但是对薄膜透过率影响不大.当功率为1kW、溅射气压0.052 Pa、AZO薄膜厚度为250nm时,其电阻率为8.38×10-4Ω·cm,波长在550 nm处透过率为89%,接近基底的本底透过率92%.当薄膜厚度为1125 nm时薄膜的电阻率降至最低(6.16×10-4 Ω·cm).  相似文献   

17.
采用溶胶-凝胶法在普通载玻片上制备Sn掺杂ZnO薄膜(SZO薄膜)。研究空气退火、低真空退火、高真空退火、氮气退火、三高退火、循环退火6种不同退火条件对SZO薄膜光电性能的影响。结果表明:6种不同的退火条件制备的SZO薄膜均为纤锌矿结构且具有c轴择优取向生长的特性。高真空退火下,SZO薄膜的结晶状况和电学性质最优,最低电阻率可达到5.4×10~(-2)Ω·cm。薄膜的可见光区平均透过率均大于85%。薄膜在390nm和440nm附近(325nm光激发下)都出现光致发光峰,在空气、氮气、低真空中退火后薄膜440nm处发光强度最为显著。  相似文献   

18.
在低温下制备了粒径小于10nm的ZnO纳米晶,用旋涂法制备ZnO纳米晶薄膜,XRD分析ZnO晶相是纤锌矿结构;SEM与AFM表明,纳米晶薄膜在300%退火后薄膜的厚度明显减小到130nm,表面粗糙度降低到3.27nm,粒径明显增大;紫外-可见吸收和透射比光谱表明,随着退火温度的增加,吸收边发生了红移,吸收肩更明显,薄膜具有高的透射率(75—85%);薄膜方阻随温度增加而增大,300℃以下退火方阻增加很小(小于8.5Ω/sq),400℃以上退火方阻大幅增加(大于21.1Ω/sq),因此,ZnO纳米晶薄膜最优退火温度点为300℃。  相似文献   

19.
采用离子束反应溅射法在玻璃基片上沉积了一系列ZnO薄膜样品.通过对薄膜样品XRD谱的分析,发现基片温度和溅射氧分压是同时影响ZnO薄膜沿c轴择优取向生长的重要因素.在基片温度350 ℃,氧分压1.3 的溅射条件下,得到了完全沿c轴取向生长的只有(002)晶面的ZnO薄膜.薄膜的吸收光谱测量结果表明,基片温度和氧分压对ZnO薄膜的光学禁带宽度有重要影响.不同氧分压、不同基片温度制备的薄膜电阻率相差很大.  相似文献   

20.
本文通过常温射频磁控溅射在单抛硅片和石英玻璃基底上溅射制备Ga_2O_3薄膜。采用分光光度计和椭偏仪测试薄膜的紫外光波段的透过率、折射率和光学吸收,利用X射线光电子能谱(XPS)测试了不同氧气氛下Ga_2O_3薄膜中氧元素的化学价态及其含量,X射线衍射(XRD)测试和拉曼散射光谱测试研究退火对薄膜生长及晶相结构的影响,采用微控四探针测试仪测试了薄膜的电阻率。研究了溅射功率、氩氧比、退火等工艺参数对薄膜结构及光电性能的影响。研究发现经过常温溅射后,再经过后退火处理的薄膜,无论在结构还是光学性能都优于之前传统制备工艺。结果显示:在氩氧比为80∶20、溅射功率为175 W、压强1.5 Pa条件下溅射2 h,沉积的薄膜厚度为197.6 nm,在紫外光波段吸收峰在284 nm,峰值透过率达到92.82%。在900℃退火下,薄膜的导电性能最好,电阻率达到137.21 m·cm。XRD测试和拉曼散射光谱结果表明,随着退火温度的升高,薄膜表现出择优生长趋势,发现β-Ga_2O_3的(201)、(401)和(403)的衍射峰随着退火温度的增加进一步增强。利用Tauc公式由透过率数据计算光学带隙结果表明,随着退火温度升高薄膜光学带隙由在4.93~5.28 eV范围内变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号