首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metallocene polyethylene/nano-silver coatings were prepared by a facile air-spray method on polymer films. Different from the prevailing strategy to endow polyethylene with antibacterial performance, we used metallocene polyethylene sol and nano-silver as a precursor to deposit coatings on polymers at a relatively low operating temperature. Antibacterial coatings with excellent mechanical properties, water resistance, and low silver release were achieved. The composite coatings were examined in terms of surface characteristics, mechanical properties, and antibacterial activity against two representative bacterial strains including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The composite coatings exhibited favorable microstructure, good mechanical properties, and suitable crystallinity. The antimicrobial tests indicated that the fabricated composite coatings showed promising antibacterial activity against E. coli and S. aureus. Furthermore, Ag ions released by the composite coating after 30 days were under 1.2 ppb. These results indicated a promising prospect of the composite coating for wide antibacterial applications.  相似文献   

2.
A simple, eco-friendly phytosynthesis of copper oxide nanoparticles (CuO NPs) using Cassia auriculata leaf extract was reported. The prepared CuO NPs was characterized by UV–vis spectroscopy which exhibited the surface plasmon resonance (SPR) band at 380–385 nm. TEM and EDX analysis confirmed that CuO NPs were spherical and in size range of 30–35 nm with identified elements Cu and O. X-ray diffraction (XRD) spectrum showed the crystalline nature of the prepared CuO NPs. FTIR spectrum confirmed the presence of Cu–O functional groups. CuO NPs showed significant antibacterial efficacy against all the tested bacterial strains, i.e., Bacillus subtilis, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. CuO NPs showed strong antibacterial action against B. subtilis and E. coli than P. aeruginosa and S. aureus. The results of this study revealed that C. auriculata leaf extract was found to be an effective bio-reducing agent for CuO NPs synthesis and also the antibacterial efficacy of phytofabricated CuO may be useful for its applications in medical and textile industries.  相似文献   

3.
Copolymer beads (RCCS-4G) with many chloromethyl groups were prepared by treating macroreticular chloromethylstyrene-tetraethyleneglycol dimethacrylate (4G) copolymer beads with chloromethylether. Copolymer beads (RAAS-4G) with benzylamino groups were prepared by treating RCCS-4G with potassium phthalimide. Then the copolymer beads containing phenol derivatives were prepared by treating RAAS-4G with p-hydroxybenzoic acid (pHBA), 2,4-dihydroxybenzoic acid (DHBA), and 3,4,5-trihydroxybenzoic acid (gallic acid, GA) in N,N-dimethylformamide. The antibacterial activity of the obtained resins was examined against Escherichia coli and Staphylococcus aureus. Resins containing phenolic hydroxy groups of 2.3–7.7 mequiv/g were obtained. Antibacterial activity of the resins containing various phenol derivatives against E. coli or S. aureus increased in the order of RAAS-4G-GA > RAAS-4G-DHBA > RAAS-4G-pHBA. The resins containing phenol derivatives exhibited higher antibacterial activity against E. coli than against S. aureus and high activity even against bacteria in NaCl solution. Scanning electron micrographs showed that high antibacterial activity was brought about by the phenolic hydroxyl groups in the resin. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1621–1630, 1997  相似文献   

4.
Acrylic acid was grafted to ozone‐treated poly(3‐hydroxybutyric acid) (PHB) and poly(3‐hydroxybutyric acid‐co‐3‐hydroxyvaleric acid) (PHBV) membranes. The resulting membranes were further grafted with chitosan (CS) or chitooligosaccharide (COS) via esterification. These CS‐ or COS‐grafted membranes showed antibacterial activity against Escherichia coli, Pseudomonas aeruginosa, methicilin‐resistant Staphylococcus aureus (MRSA), and S. aureus. The antibacterial activity to E. coli was the highest, whereas the antibacterial activity to MRSA was the lowest among these four bacteria tested. Acrylic acid grafting can increase the biodegradability with Alcaligens faecalis, whereas CS and COS grafting can reduce the biodegradability. In addition, CS‐grafted PHBV membrane showed higher antibacterial activity and lower biodegradability than COS‐grafted PHBV membrane. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 12: 2797–2803, 2003  相似文献   

5.
This study describes the preparation of colloidal polyaniline/polyvinyl alcohol (PAn/PVA) nanocomposite by chemical polymerization of aniline (AN) in the presence of ammonium peroxydisulphate (APS) as an oxidant and PVA as a stabilizer. The product was characterized morphologically using a scanning electron microscope (SEM) and transmission electron microscopy (TEM), chemically using Fourier transform infrared (FTIR) and optically UV–visible. The prepared polymer was then tested for the antibacterial properties against gram‐negative bacteria: Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa); and gram‐positive bacteria: Staphylococcus aureus (S. aureus). The antibacterial properties were assessed by disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBCs), and the bactericidal effect methods. The results clearly showed that colloidal PAn/PVA nanocomposite strongly inhibits the growth of wild‐type E. coli (19 ± 0.5) mm followed by P. aeruginosa (17 ± 0.5 mm) and S. aureus (17.5 ± 0.5 mm) bacteria. S. aureus was completely killed after exposure for only 15 min, whereas S. aureus and E. coli were completely killed after exposure for 25 min. J. VINYL ADDIT. TECHNOL., 22:267–272, 2016. © 2014 Society of Plastics Engineers  相似文献   

6.
Ninglin Zhou  Na Meng  Yinchen Ma  Jun Zhang  Li Li  Jian Shen 《Carbon》2009,47(5):1343-1678
A graphite oxide (GO)/heparin-benzalkonium chloride (C12) composite was synthesized. The composite was characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). XRD data showed that spacing between layers of GO increased from 0.59 to 3.256 nm. This enlarged layer spacing suggested that heparin-C12 complex intercalated completely in between layers of GO. FTIR also confirmed intercalation of heparin-C12 complex into GO gallery. In vitro release rate of heparin from GO-heparin-C12 was monitored for 30 days. Heparin released at a very fast rate from the composite matrix in the first day. The release slowed down significantly after the first day and continued for 30 days. In addition, antibacterial activity of the composite against Escherichia coli (E. coli) and Staphlococcus aureus (S. aureus) was evaluated using zone of inhibition and colony count assays. Both GO-heparin-C12 and GO-C12 clearly showed antibacterial activity against E. coli and S. aureus while GO alone has a relatively low activity against S. aureus and almost no effect on E. coli.  相似文献   

7.
A series of cationic gemini surfactants containing two dimethylalkylammonium chains linked by ethylene glycol bisacetyl spacers were synthesized [Gm‐AnA‐m, G = gemini surfactant, m = 12 (–C12H25), 14 (–C14H29), or 16 (–C16H33), A = acetyl, and n = 2, 3, or 4 is the number of ethylene glycol units in the spacers]. Because of the inductive effect of the oxygen atom in the spacer, acylation can take place using chloroacetyl chloride instead of bromoacetyl bromide which helps to limit the use of environmentally harmful reagents. Critical micelle concentrations were determined using conductivity measurements. The antibacterial activities of the surfactants against Gram‐positive bacterium Staphylococcus aureus and Gram‐negative bacterium Escherichia coli were evaluated from the minimum inhibitory concentration (MIC), minimum bacterial concentration, a time–kill study, and the inhibitory zone. Increasing the length of the spacer did not result in an obvious change of antibacterial activity. However, increasing the length of the alkyl chain apparently increased the antibacterial activity against S. aureus but decreased the antibacterial activity against E. coli. The G12‐A2A‐12 surfactant had the lowest CMC of 1.26 mmol L?1 and exhibited the best antibacterial activity with a MIC of 32 μg mL?1 toward S. aureus and 64 μg mL?1 toward E. coli in the presence of 105 CFU of bacteria. This work indicated that these cationic gemini surfactants have potential applications as antibacterial agents and emulsifiers.  相似文献   

8.
Two new 14-membered cyclopeptide alkaloids, Oxyphylline B (4) and Oxyphylline C (5), along with three known 13-membered cyclopeptide alkaloids, were isolated from stem and roots of Zizyphus oxyphylla Edgew. The compounds were tested for antibacterial activity. Oxyphylline B (4) showed comparatively better antibacterial activities against Escherichia coli (MIC, 5 μg/mL) than other compounds. This compound also exhibited weak antimicrobial activities against Staphylococcus aureus (MIC, 25 μg/mL), Pseudomonas aeruginosa (MIC, 50 μg/mL) and Salmonella typhi (MIC, 50 μg/mL).  相似文献   

9.
A novel photocatalyst of Ta-doped ZnO nanoparticles was prepared by a modified Pechini-type method. The antimicrobial study of Ta-doped ZnO nanoparticles on several bacteria of Gram-positive Bacillus subtilis (B. subtilis) and Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) were performed using a standard microbial method. The Ta-doping concentration effect on the minimum inhibitory concentration (MIC) of various bacteria under dark ambient has been evaluated. The photocatalytical inactivation of Ta-doped ZnO nanoparticles under visible light irradiation was examined. The MIC results indicate that the incorporation of Ta5+ ions into ZnO significantly improve the bacteriostasis effect of ZnO nanoparticles on E. coli, S. aureus, and B. subtilis in the absence of light. Compared to MIC results without light irradiation, Ta-doped ZnO and pure ZnO nanoparticles show much stronger bactericidal efficacy on P. aeruginosa, E. coli, and S. aureus under visible light illumination. The possible antimicrobial mechanisms in Ta-doped ZnO systems under visible light and dark conditions were also proposed. Ta-doped ZnO nanoparticles exhibit more effective bactericidal efficacy than pure ZnO in dark ambient, which can be attributed to the synergistic effect of enhanced surface bioactivity and increased electrostatic force due to the incorporation of Ta5+ ions into ZnO. Based on the antibacterial tests, 5 % Ta-doped ZnO is a more effective antimicrobial agent than pure ZnO.  相似文献   

10.
The authors report herein in vitro antibacterial property and osteoblast biocompatibility of electrospun Ag doped HAp/PHBV (Ag-HAp/PHBV) composite nanofibers as an osteoconductive and antibacterial material for bone tissue engineering applications. Ag-HAp powders were synthesized and stable composite suspensions of Ag-HAp/PHBV were prepared with the aid of a cationic surfactant DTAB for the electrospinning process. Continuous and uniform composite nanofibers were generated within a diameter range of 400–900 nm. Obtained nanocomposite scaffolds provide a favorable environment for bone mineralization, SaOS-2 osteoblastic cell attachment and growth as well as they present antibacterial activity against E. coli and S. aureus bacteria without any noticeable cytotoxic effect.  相似文献   

11.
Antibacterial activity of chitosan, and a graft copolymer based on chitosan namely chitosan-graft-poly(N-vinyl imidazole), (Chi-graft-PNVI), was studied against Staphylococcus epidermidis (S. epidermidis) and Escherichia coli (E. coli). The graft copolymer was prepared by two different methods; via an N-protection route and without N-protection to observe the effect of free amine groups on the antibacterial activity. It was further investigated whether a combination of each of these products would produce a synergetic effect with the antibiotic gentamicin against S. epidermidis and E. coli compared to gentamicin alone. Antibacterial activity was determined by the inhibition zone measurement method. Results reveal an improvement in the antibacterial activity of gentamicin, when combined with chitosan or chitosan-based biomaterials against S. epidermidis and E. coli compared to that of gentamicin itself. When gentamicin is used in combination with Chi-graft-PNVI prepared via N-protection, antibacterial activity against S. epidermidis is three times higher in comparison with the activity of gentamicin alone according to the inhibition zone measurements. Gentamicin produces an inhibition zone of 8.2 ± 0.2 mm against S. epidermidis when undiluted, while the inhibition zone increases to 25.8 ± 0.7 mm in combination with Chi-graft-PNVI prepared via N-protection. These combinations have a potential to form a basis for new formulations of gentamicin with improved antibacterial activity and might allow usage of decreased doses of the antibiotic.  相似文献   

12.
A novel anionic gemini surfactant containing an ester bond in the spacer group was synthesized using cardanol as the raw material and characterized by IR, 1H NMR and 13C NMR. The surface properties of the gemini surfactant were investigated and compared with its corresponding single chain surfactant counterpart. It was found that this novel gemini surfactant exhibited a low critical micelle concentration value (1.9 mM) and good efficiency in reducing surface tension of water (33.6 mN/m). The gemini surfactant was found to have antimicrobial activity against Gram-negative (Escherichia coli and Pseudomonas aeruginosa), Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacteria and fungi (Aspergillus niger, Aspergillus flavus, Candida albicans and Rhizopus stolonifer). The gemini as well as the corresponding single chain surfactant showed good antimicrobial activity against all pathogenic microorganisms studied and can be employed as an antimicrobial agent. The synthesized novel anionic gemini surfactant possesses an excellent wettability and low foamability.  相似文献   

13.
Novel nanocomposite films of chitosan/phosphoramide/Ag NPs were prepared containing 1–5% of silver nanoparticles. The Ag NPs were synthesized according to the citrate reduction method. The XRD and SEM analysis of Ag NPs, chitosan (CS), phosphoramide (Ph), CS/Ph, CS/Ag NPs films and the nanocomposite films 1–5 containing CS/Ph/1–5% Ag NPs were investigated. The in vitro antibacterial activities were evaluated against four bacteria including two Gram‐positive Staphylococcus aureus (S. aureus), Bacillus cereus (B. cereus) and two Gram‐negative Escherchia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) bacteria. Results revealed greater antibacterial effects of the films against Gram‐positive bacteria. Also, nanocomposite films containing higher percent of Ag NPs showed more antibacterial activities. POLYM. COMPOS. 36:454–466, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
Synthetic amphiphilic polymers have been established as potentially efficient agents to combat widespread deadly infections involving antibiotic resistant superbugs. Incorporation of poly(ethylene glycol) (PEG) side chains into amphiphilic copolymers can reduce their hemolytic activity while maintaining high antibacterial activity. Our study found that the incorporation of PEG has substantially different effects on the hemolytic and antibacterial activities of copolymers depending on structural variations in the positions of cationic centers relative to hydrophobic groups. The PEG side chains dramatically reduced the hemolytic activities in copolymers with hydrophobic hexyl and cationic groups on the same repeating unit. However, in case of terpolymers with cationic and lipophilic groups placed on separate repeating units, the presence of PEG has significantly lower effect on hemolytic activities of these copolymers. PEGylated terpolymers displayed substantially lower activity against Staphylococcus aureus (S. aureus) than Escherichia coli (E. coli) suggesting the deterring effect of S. aureus’ peptidoglycan cell wall against the penetration of PEGylated polymers. Time-kill studies confirmed the bactericidal activity of these copolymers and a 5 log reduction in E. coli colony forming units was observed within 2 h of polymer treatment.  相似文献   

15.
HBPE of different generations were synthesized using 4-hydroxybenzoic acid and 2,2′,2″-nitrilotriethanol via the A2 + B3 method. The reaction was carried out in a dry nitrogen atmosphere using p-toluene sulfonic acid (p-TSA) as an acid catalyst. The chosen molar ratios of 2,2′,2″-nitrilotriethanol to 4-hydroxybenzoic acid were 1:3, 1:6, and 1:21 for the G1, G2, and G5 generations, respectively. The G5 stage of HBPE was further coupled with acrylic acid to modify the terminal hydroxyl groups. The resulting products were analyzed using 1H NMR, 13C NMR, FTIR spectroscopy, and GPC. Silver nanoparticles were prepared by a reductive technique using HBPEs of the G5 generation as the matrix. XRD and TEM analysis indicated the formation of highly spherical and stable nanosilver in the HBPE. The antibacterial activity of the nanosilver/HBPE was evaluated against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) bacteria.  相似文献   

16.
The prevention and treatment of biofilm-mediated infections remains an unmet clinical need for medical devices. With the increasing prevalence of antibiotic-resistant infections, it is important that novel approaches are developed to prevent biofilms forming on implantable medical devices. This study presents a versatile and simple polydopamine surface coating technique for medical devices, using a new class of antibiotics—antimicrobial peptidomimetics. Their unique mechanism of action primes them for activity against antibiotic-resistant bacteria and makes them suitable for covalent attachment to medical devices. This study assesses the anti-biofilm activity of peptidomimetics, characterises the surface chemistry of peptidomimetic coatings, quantifies the antibacterial activity of coated surfaces and assesses the biocompatibility of these coated materials. X-ray photoelectron spectroscopy and water contact angle measurements were used to confirm the chemical modification of coated surfaces. The antibacterial activity of surfaces was quantified for S. aureus, E. coli and P. aeruginosa, with all peptidomimetic coatings showing the complete eradication of S. aureus on surfaces and variable activity for Gram-negative bacteria. Scanning electron microscopy confirmed the membrane disruption mechanism of peptidomimetic coatings against E. coli. Furthermore, peptidomimetic surfaces did not lyse red blood cells, which suggests these surfaces may be biocompatible with biological fluids such as blood. Overall, this study provides a simple and effective antibacterial coating strategy that can be applied to biomaterials to reduce biofilm-mediated infections.  相似文献   

17.
Medical applications require, in most cases, antibacterial protection. The use of silver (Ag) gives important antibacterial properties since silver is highly toxic for bacteria. In this research work, we have used silver nanoparticles (Ag NPs) with different surfactants, polyvinyl pyrrolidone (PVP) and oleic acid (OA) to facilitate dispersion. PP‐Ag NPs compounds were prepared by melt mixing, and the effects of the processing conditions on nanoparticles' dispersion were investigated by transmission electron microscopy (TEM). The antibacterial efficiency of PP‐Ag NPs compounds against Staphylococcus aureus ATCC 6538 and Escherichia coli ATCC 8379 was evaluated. Results show that good dispersion is obtained with rotating speeds in the 350–500 rpm range. TEM analysis reveals balanced dispersion and presence of some Ag NPs aggregates. Regarding antimicrobial properties, the use of PVP as surfactant leads to “significant” antimicrobial activity of 1.5 against Staphylococcus aureus and Escherichia coli; on other hand, the use of oleic acid (OA) as surfactant leads to strong protection against Staphylococcus aureus (antimicrobial activity between 2.5 and 3.3) but the overall protection against Escherichia coli is very low (lower than 1). Results show that the use of surfactants for Ag NPs has important effects on antibacterial properties of polypropylene filled with coated Ag NPs. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
The aptitude of cyclodextrins (CDs) to form host-guest complexes has prompted an increase in the development of new drug formulations. In this study, the inclusion complexes of pipemidic acid (HPPA), a therapeutic agent for urinary tract infections, with native β-CD were prepared in solid state by kneading method and confirmed by FT-IR and 1H NMR. The inclusion complex formation was also characterized in aqueous solution at different pH via UV-Vis titration and phase solubility studies obtaining the stability constant. The 1:1 stoichiometry was established by a Job plot and the inclusion mechanism was clarified using docking experiments. Finally, the antibacterial activity of HPPA and its inclusion complex was tested on P. aeruginosa, E. coli and S. aureus to determine the respective EC50s and EC90s. The results showed that the antibacterial activity of HPPA:β-CD against E. coli and S. aureus is higher than that of HPPA. Furthermore, HPPA and HPPA:β-CD, tested on human hepatoblastoma HepG2 and MCF-7 cell lines by MTT assay, exhibited, for the first time, antitumor activities, and the complex revealed a higher activity than that of HPPA. The use of β-CD allows an increase in the aqueous solubility of the drug, its bioavailability and then its bioactivity.  相似文献   

19.
There is a significant and urgent need for the development of novel antibacterial agents to tackle the increasing incidence of antibiotic resistance. Cholic acid-based small molecular antimicrobial peptide mimics are reported as potential new leads to treat bacterial infection. Here, we describe the design, synthesis and biological evaluation of cholic acid-based small molecular antimicrobial peptide mimics. The synthesis of cholic acid analogues involves the attachment of a hydrophobic moiety at the carboxyl terminal of the cholic acid scaffold, followed by the installation of one to three amino acid residues on the hydroxyl groups present on the cholic acid scaffold. Structure–activity relationship studies suggest that the tryptophan moiety is important for high antibacterial activity. Moreover, a minimum of +2 charge is also important for antimicrobial activity. In particular, analogues containing lysine-like residues showed the highest antibacterial potency against Gram-positive S. aureus. All di-substituted analogues possess high antimicrobial activity against both Gram-positive S. aureus as well as Gram-negative E. coli and P. aeruginosa. Analogues 17c and 17d with a combination of these features were found to be the most potent in this study. These compounds were able to depolarise the bacterial membrane, suggesting that they are potential antimicrobial pore forming agents.  相似文献   

20.
Poly(ethylene terephthalate) (PET) fibers were treated with 60Co‐γ‐ray and grafted with acrylic acid. The resulting fibers were further grafted with chitosan (CS) via esterification. Afterward, hyaluronic acid (HA) was immobilized onto CS‐grafting fibers. The antibacterial activity of CS against S. aureus, E. coli, and P. aeruginosa was preserved after HA‐immobilization. After immobilizing HA, the L929 fibroblasts cell proliferation was improved forCS‐grafting PET fiber. The results indicate that by grafting with CS and immobilizing with HA, PET fibers not only exhibit antibacterial activity, but also improve the cell proliferation for fibroblast. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 220–225, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号