首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对青海油田稠油凝固点高、易堵塞管线的问题,分析了稠油族组成,考察了温度和加碱量对稠油黏度的影响,评价了高碳醇酯类聚合物、表面活性剂以及溶剂对稠油的降凝和降黏效果,并与碱复合测试了其对稠油黏度的影响。实验结果表明,温度的升高、碱的加入均可降低稠油黏度,复配降黏剂的质量浓度为600 mg/L时,稠油黏度降至94 m Pa·s,降黏率达85.3%。  相似文献   

2.
针对普通稠油注水开发效果差、化学降黏驱不能有效提高驱替过程中的波及效率的问题,以N,N-二甲基 胺、3-氯-2-羟基-丙磺酸钠、烷基醇聚氧乙烯醚硫酸铵盐为原料,研制了具有降黏和起泡功能的复合驱油体系。 研究了部分水解聚丙烯酰胺对稠油乳化降黏效果的影响,以及聚合物、油藏压力和稠油对驱油体系起泡能力与 稳定性的影响;对比了聚合物/降黏复合驱、聚合物/降黏/泡沫复合驱提高稠油采收率的效果。结果表明,在质量 分数为 0.3%、温度 30~80 ℃、油水体积比为 7∶3 的条件下,复合驱油体系可使稠油黏度从 1607 mPa·s 降至 35.0~60.3 mPa·s,降黏率达到96%以上;加入聚合物能提高复合驱油体系在更低浓度下的降黏能力。复合驱油 体系具有良好的起泡性能。随着油藏压力增加、稠油含量提高,泡沫稳定性明显增强。在70 ℃下,压力由1 MPa 升至13 MPa时,泡沫的半衰期由8 min提高至120 min。稠油稳定泡沫的作用明显。聚合物主要通过提高黏度、 降低泡沫液膜的排液速度、增强膜的强度来提高稳定性。在物理模拟驱油实验中,聚合物/降黏复合驱体系可在 水驱基础上提高稠油采收率10.05百分点。在注入聚合物/降黏复合驱油体系后再注入氮气,复合驱效果得到大 幅提高。注入气体后生成的泡沫有效提高了驱替过程中的波及效率,聚合物/降黏/泡沫复合驱提高采收率达到 22.0 百分点。降黏/泡沫复合驱技术能实现降黏与剖面调整一体化,对水驱稠油提高采收率具有良好的应用 前景。  相似文献   

3.
本文针对中原油田稠油油藏地质及稠油特征,应用正交实验设计方法,实验筛选出了耐温抗盐稠油乳化降黏剂体系,最佳配方如下:0.05%聚氧乙烯壬基苯酚醚NP-10+0.1%两性离子表面活性剂CS-B+0.1%十二烷基苯磺酸钠ABS,即在复配降黏荆体系中NP-10、CS-B、ABS的质量比为1:2:2时的降黏效果最佳。研究了pH值、含水量、水矿化度,二价阳离子浓度、温度、配伍性等稠油降黏剂性能的影响。结果表明:在油水比7:3、50℃下所筛选的最佳降黏剂体系对稠油的降黏率达99%,耐温110℃,耐盐,可满足于中原油田的稠油井的降黏需要。  相似文献   

4.
叙利亚O油田Sh-B油藏为典型的低渗稠油油藏,具有埋藏深、渗透率低、原油黏度大等特点,蒸汽吞吐注汽难,注汽质量差。针对这些问题,开展了低渗稠油热化学复合体系室内研究,筛选、复配了适合该油藏稠油的油溶性降黏剂、高温驱油剂,并评价了伴注CO2、高温驱油剂和油溶性降黏剂在低渗稠油开发中的效果及其可行性。结果表明,添加降黏剂能使降黏率达到78%以上,高温驱油剂显著降低界面张力,注入CO2能够明显改善O油田稠油开采效果,150℃条件下热化学复合体系最终驱替效率达到91.65%。热化学复合体系能够显著改善低渗稠油油藏开发效果,提高油藏采收率,为国内外低渗稠油油藏开发提供借鉴。  相似文献   

5.
针对河南油田稠油降黏中存在的问题,考察了氟碳表面活性剂在河南油田稠油降黏中的作用。通过室内筛选评价,制得氟碳-碳氢表面活性剂降黏体系,考察了降黏剂浓度及配比、酸碱度及温度对降黏效果的影响,确定了最佳配方体系为0.2%FC-01氟碳表面活性剂+1%YN碳氢表面活性剂。该体系对河南油田不同区块的不同黏度的稠油在35 70℃、pH值3 11范围内的降黏率均可达到95%以上。  相似文献   

6.
降低稠油黏度,对解决稠油油藏合理开发利用具有重要意义。在对胜利稠油性质进行分析的基础上,设计合成了含过渡金属的两亲性主剂,并优选了对催化降黏具有协同作用的助剂,以此形成的催化剂体系对胜利稠油表现出良好的降黏作用。在实验室模拟条件下,对催化剂体系的降黏效果进行的评价表明,该体系在催化剂用量1.5%(w)、反应温度200℃、反应时间20h的条件下,稠油黏度降低65.0%。  相似文献   

7.
《石油化工应用》2016,(2):34-39
针对泾河油田原油黏度大,胶质、沥青质含量高,容易发生抽油机不同步及软卡现象等特点,分析了井筒化学降黏技术、井筒掺稀降黏技术和双空心杆井筒降黏技术等3种常用的稠油井筒降黏工艺对本地区原油的适应性,并对现场试验效果进行了评价,结果表明,井筒化学降黏技术对泾河油田17井区稠油具有良好的降黏效果,同时能有效降低集输油井的井口回压,适用性较好;由于稀油资源缺乏,井筒掺稀降黏技术不适宜在本地区推广;对于地层供液能力充足,产量较高,含水较低,原油温度敏感性好及原油黏度小于100 000 m Pa·s(50℃)的稠油井,可采用双空心杆井筒降黏技术。  相似文献   

8.
通过室内实验从油田污水中筛选出一株类短短芽孢杆菌,经研究发现,该菌产生的生物表面活性剂具有高效辅助降黏特性,利用生物与化学的协同效应可显著降低稠油黏度。降黏剂A/菌株B-1发酵液的最佳降黏复配体系为:降黏剂A用量为0.20%,菌株B-1发酵液用量为50%(即体系最佳油水比为5∶5),降黏率达96.43%。该生物体系可减少降黏剂用量,既大大减小化学降黏剂对环境的污染,又可充分发挥生物方法的优势,具有绿色环保的特点,在未来稠油开采领域具有较好的应用前景。  相似文献   

9.
针对吉林扶余油田稠油,选取一种水溶性降黏剂,采用乳化降黏法,改善原油流变性并使其黏度降低,提高了稠油油藏的采收率。采用静态评价与动态评价相结合的方式;对该降黏剂的性能进行评价,利用流变仪测试不同降黏剂浓度、不同油水比条件下的降黏率,以此来考察降黏剂对稠油的静态降黏效果。采用人造岩心物理模拟实验,考察不同降黏剂浓度、注入速度、注入时机对降黏剂动态降黏效果的影响,为矿场实际应用提供理论依据。实验表明,该降黏剂能够有效降低吉林稠油黏度,具有较好的降黏效果。  相似文献   

10.
超深层特稠油油藏热采效益差、水驱效率低,需要依靠技术创新才能实现经济高效开发。通过开展降黏型泡沫体系开发机理物理模拟与分子模拟研究,并在鲁克沁油田超深层特稠油油藏进行了矿场实践。研究结果表明,优选的苯磺酸盐型阴离子活性剂HY-3J在高矿化度地层水环境下,既能形成较为稳定的泡沫体系,又能形成水包油乳状液降低稠油黏度。泡沫微观渗流实验结果表明,泡沫可以利用其液膜的黏弹性对稠油产生微观作用力,该作用力可以高效乳化降黏稠油。岩心驱替实验表明,超深层稠油水驱采出程度仅为12.7%。降黏泡沫体系可以显著降低含水率,提高产油速度,降黏泡沫驱提高采出程度17.4%。分子模拟结果表明,苯磺酸盐阴离子活性剂的苯环结构可以与沥青质上的芳香环形成π—π相互作用,这提高了活性剂与沥青质的范德华相互作用能,从而有利于解聚稠油沥青质形成的网状结构,降低稠油黏度。降黏泡沫体系在鲁克沁油田实施了8个井次降黏泡沫体系吞吐,均取得了较好的降水增油效果,这说明降黏泡沫体系可以有效改善超深层特稠油开发效果。  相似文献   

11.
针对南堡35-2油田地层原油黏度高的特点,从族组分转化改善稠油流动性角度,评价了13种降黏剂的降黏性能。研究表明,降黏剂[Et3NH]Zncl3.co2+具有较优的改质降黏效果,在剂/油质量比1%、80%、反应16h条件下,可实现稠油黏度不可逆降低,降黏率达到22.0%。该降黏剂从根本上改善了稠油在地层中的流动性,有利于提高其采收率。  相似文献   

12.
对辽河稠油在蒸汽吞吐中发生的热裂解行为进行了室内实验研究。在高压反应釜中模拟热采时的井下条件,从四组分(SARA)、70℃降黏率、裂解气组成的角度分别考察了反应温度、反应时间、加水量对辽河稠油热裂解降黏效果的影响。结果表明:辽河稠油在250℃已开始发生裂解;在蒸汽吞吐条件下,SARA组成发生变化,轻质组分增加,胶体体系受到破坏,稠油黏度降低;稠油降黏率与反应温度成线性关系,温度从250℃升至350℃反应16 h的降黏率由32.03%升至98.82%;在350℃反应时间由1 h增至24 h,降黏率从38.67%升至99%。反应时间超过16 h后降黏率增长趋势变缓并趋于恒值,在其他温度下稠油黏度的变化有相同的规律,降黏率与反应时间的关系可以用同一公式表示;稠油热处理后降黏效果越好产生裂解气越多,裂解气含H2S也越多;水的存在对辽河稠油裂解有影响,当加入的水完全汽化时(本实验中加水量为稠油质量的10%时),降黏效果最好。蒸汽吞吐开采中稠油可在一定程度上实现永久性降黏。图3表8参6。  相似文献   

13.
实验考察了胜利孤东稠油井下催化水热裂解和乳化/催化水热裂解降黏效果。所用催化剂为水溶性铁镍钒体系,Fe3+∶Ni2+∶VO4+=5∶1∶1,100 g稠油与30 g 0.5%催化剂水溶液在240℃反应24小时。原始黏度(50℃)11.0和8.36 Pa.s的两种稠油裂解并静置除水后,黏度降低76.2%和75.6%,室温放置60天后降黏率下降小于3个百分点,气相色谱显示裂解后轻组分明显增加,红外光谱显示稠油组分发生脱羧反应且芳环数减少。讨论了稠油催化水热裂解反应机理。所用化学助剂JN-A在油水中均可溶,耐温达250℃,耐矿化度达50 g/L,其水溶液以30∶100的质量比与稠油混合时形成低黏度的O/W乳状液。当水相含1.0%JN-A和0.5%催化剂时,两种稠油水热裂解后的反应混合物为O/W乳状液,黏度仅为319和309 mPa.s,静置除水后的稠油降黏率增加到86.5%和87.3%,其中的轻组分含量进一步增加。该井下乳化/催化水热裂解复合降黏法成功地用于孤东两口蒸汽吞吐井,稠油井作业后初期采出的原油黏度由~9 Pa.s降低到1 Pa.s左右,随采油时间延长而逐渐升高,约50天后超过4Pa.s。图2表6参5。  相似文献   

14.
稠油降黏冷采是一种重要的稠油开采方式,研究合成了两亲性聚合物降黏剂L–A,并利用乌氏黏度仪、电导率仪等对L–A剂进行性能评价,与非离子型降黏剂烷基酚聚氧乙烯醚OP–10和吐温–80、阴离子型降黏剂石油磺酸盐(WPS)和烷基硫酸钠(SDS)相比,L–A剂耐温降黏效果良好,耐温120℃.室内物模驱油实验结果表明,相比单一水...  相似文献   

15.
针对稠油黏度大、常规降黏剂在多孔介质中与稠油作用不充分,导致稠油油藏采出程度低等问题,自主研发了高效复合自扩散降黏体系BXD,研究了该体系在不同温度、含水率等因素下对脱水稠油和W/O乳状液黏度的影响.通过沥青质红外光谱、相对分子质量、偶极矩测试以及微观形态观察等方法,研究降黏体系对稠油的主要作用机制.通过填砂管驱替实验...  相似文献   

16.
海上油田稠油储量丰富,开采价值巨大,但由于稠油基础黏度高和反相乳化的原因,导致在井筒举升阶段出现电泵负荷巨大、举升困难等问题。使用非离子、阳离子、两性离子表面活性剂以及助剂制备HY系列水性降黏剂,结果表明,HY-1体系降黏率99.20%,50℃下30 min自然脱水率84.40%,120℃下24 h高温老化后降黏率为96.98%,伴注管流实验降压幅度达57.9%。可见,自主体系HY-1乳化降黏性能优异,能够满足海上油田井筒举升用水溶性降黏剂的室内评价要求。  相似文献   

17.
本实验通过乳化降黏的方法,旨在找出能改善新疆稠油低温流动性能的水溶性乳化降黏剂。研究了温度、单一降黏剂和复配降黏剂对新疆稠油黏度的影响。结果表明,经筛选,单一降黏剂AEO、OP-10、AES对新疆稠油的降黏效果较好,在相同条件下的降黏效果: AEO>OP-10>AES。通过正交实验得到最佳复配降黏剂XJ-1的配方为:AEO用量0.3%、OP-10用量0.2%、AES用量0.1%、NaOH用量0.2%。在50℃、油水比为7:3的条件下,乳化降黏剂XJ-1可使新疆稠油的黏度降至40.56 mPa·s,降黏率达98%以上,且具有较好的稳定性及破乳脱水性。  相似文献   

18.
针对稠油胶质、沥青质含量高,黏度和凝点高,给其开采和运输带来困难的情况,以丙烯酸异构酯、苯乙烯、马来酸酐为聚合单体,甲苯为溶剂,过氧化二苯甲酰为引发剂,制备了一种广谱型支状油溶性降黏剂(YGZ型油溶性降黏剂),对制备条件进行优化,考察其对多种油品的降黏效果,并对其降黏机理进行初步分析。结果表明:YGZ型油溶性降黏剂的适宜制备条件为:共聚物单体丙烯酸异构酯、马来酸酐、苯乙烯的摩尔比为5:1:3,过氧化二苯甲酰加入量(w)1.0%,反应温度90 ℃,反应时间6 h;该降黏剂可使黏度(50 ℃)为2 106 mPa?s的伊拉克原油黏度下降70.4%;含有支链结构的异构型降黏剂的降黏效果比正构型降黏剂好;该降黏剂具有较好的广谱性,可用于多种稠油降黏。  相似文献   

19.
渤海某稠油油田原油黏度大,胶质沥青质含量高,地层水矿化度较高,且油井完井方式为常规完井(管柱耐温≤120℃),热采吞吐温度受限,效果一般。为提高稠油常规井开采效果,室内研制了热采吞吐用耐温耐盐稠油乳化降黏体系CY-02,该体系由磺基甜菜碱类两性表面活性剂LHSB、以改性聚醚为主要成分的非离子表面活性剂PFC-1组成,正交实验确定其最佳配比为2∶1。考察了该化学体系的静态性能(耐温耐盐性、乳化降黏性能、乳液稳定性、界面张力、润湿性)和动态驱油效果。研究结果表明,该体系耐温≥120℃,NaCl容忍度40000 mg/L,CaCl2容忍度1500 mg/L;体系120℃老化24 h后仍具有良好的界面性能,在油水比7∶3时,可形成稳定的乳状液,50℃下体系对稠油的降黏率达98.8%;低含水率下亦不发生反相乳化;体系与原油的界面张力为10-2mN/m数量级;体系在煤油浸润后的模拟岩心表面的润湿角为10°,可使岩石表面由油湿转变为水湿;120℃下动态驱油实验表明,该稠油降黏体系对稠油驱与单独水驱相比,采油速度更快,最终采收率提高10.65%。渤海某稠油油井的现场施工效果表明该稠油降黏体系取得了良好的应用效果。图4表4参15  相似文献   

20.
胶质降解和生物乳化在稠油降黏中的作用   总被引:1,自引:0,他引:1  
芽孢杆菌QB26是一株高温解烃菌,能以胶质为唯一碳源生长,在以2%胶质为唯一碳源的无机盐培养基中,55℃好氧振荡培养14d,胶质降解量可以达到45.96%;同样培养条件下,该菌发酵液可以较好地乳化等体积的稠油(55℃条件下黏度为1146 mPa·s),稠油降黏率达到66.49%。该菌与一株假单胞菌T-1复配(VQB26 ∶ V T-1 =1:1)后作用稠油,可以显著改善稠油的乳化效果(乳化稳定性增强,平均乳化粒径为17.88 μm,减小粒径67.3%),此时的稠油乳化黏度为5.11 mPa·s,仅为初始黏度的0.45%。物理模拟驱油实验结果表明,该体系在均质岩心和非均质岩心中提高模拟油藏的原油采收率分别为14.4%和22.38%,达到了降解胶质和生物乳化的双重降黏效果,大幅度提高了原油的流动性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号