共查询到18条相似文献,搜索用时 65 毫秒
1.
基于粒子群算法的非线性方程组求解 总被引:8,自引:0,他引:8
将非线性方程组的求解问题转化为无约束极大极小优化问题,并应用一种新的进化计算(EC)方法——粒子群算法(PSO)求解此优化问题。数值实验的结果验证了该方法的可行性和有效性。 相似文献
2.
3.
结合Hooke-Jeeves和粒子群的优点,提出了一种混合粒子群算法,用于求解非线性方程组,以克服Hooke-Jeeves算法对初始值敏感和粒子群容易陷入局部极值而导致解的精度不够的缺陷。该算法充分发挥了粒子群强大的全局搜索能力和Hooke-Jeeves的局部精细搜索能力,数值实验结果表明:能够以满意的精度求出对未知数具有敏感性的非线性方程组的解,具有良好的鲁棒性和较快的收敛速度和较高的搜索精度。 相似文献
4.
提出了一种求解非线性方程组的数值方法,将求解非线性方程组的解转化为函数优化问题,应用粒子群优化算法求出一个近似解,将此解作为初始猜测值,进一步应用Levenberg-Marquardt(LM)算法求得更高精度的解,提高了时间效率。 相似文献
6.
针对传统非线性方程组的解法对初始值敏感、收敛性差等问题,提出一种求解非线性方程组的量子粒子群算法.用量子位的概率幅对粒子位置编码,通过量子旋转门和量子非门完成粒子的更新与变异.该算法可发挥量子粒子群的群体搜索能力和全局收敛性,在算法中融入拟牛顿法,加强局部搜索能力,提高求解精度.数值模拟实验表明,算法有着可靠的收敛性和较高的收敛速度与精度. 相似文献
7.
8.
利用粒子滤波求解旅行商问题 总被引:1,自引:0,他引:1
针对现有优化算法求解旅行商问题(TSP)时容易陷入局部极值的缺点,提出一种基于粒子滤波的优化搜索算法,该算法将TSP最优路径的搜索过程看成是一个动态时变系统。阐述了利用粒子滤波求解TSP最优路径的基本思想,给出了该方法的具体实现步骤。为了增强算法跳出局部极值的能力,在采样过程中引入了遗传算法的交叉和变异操作来丰富样本的多样性。最后为了验证新算法的有效性,进行了仿真实验,结果表明基于粒子滤波的优化算法能够找到比其他优化算法更好的解。 相似文献
9.
提出了一种新颖的状态定义粒子群优化算法。该算法针对粒子群算法容易陷入局部最优和搜索精度不高的缺点,结合爬山算法和粒子群算法的特点,根据粒子状态的实时更新采用不同的搜索方法,在迭代过程中搜索到尽可能多的局部最优解,从而使算法可以更容易地跳出局部最优,更高效地搜索到全局最优解。对测试函数和非线性方程组求解问题进行实例仿真,仿真结果验证了算法的有效性,具有一定的实际应用价值。 相似文献
10.
传统的非线性约束优化算法的精度较低,为了克服这一问题,提出了一种基于粒子滤波的新型优化算法。该算法用于解决非线性约束优化问题,并结合粒子滤波器的模型和机制。首先,利用粒子滤波算法的基本原理建立这种优化算法,并给出算法的操作步骤;然后将非线性约束优化问题转换为函数优化问题函数优化问题,并针对非线性约束优化问题,建立粒子滤波优化算法的数学模型。仿真实验结果证明了这种新型算法的正确性,并且表明了相对于传统的优化算法,基于粒子滤波器的优化方法在解决非线性优化问题方面具有更高的效率和速率,并对今后的非线性约束优化问题具有适应性。 相似文献
11.
基于极大熵差分进化混合算法求解非线性方程组* 总被引:2,自引:1,他引:2
针对非线性方程组,给出了一种新的算法——极大熵差分进化混合算法。首先把非线性方程组转换为一个不可微优化问题;然后用一个称之为凝聚函数的光滑函数直接代替不可微的极大值函数,从而可把非线性方程组的求解转换为无约束优化问题,利用差分进化算法对其进行求解。计算结果表明,该算法在求解的准确性和有效性均优于其他算法。 相似文献
12.
13.
针对低信噪比时标准粒子滤波对弱小目标的检测与跟踪时存在的粒子贫乏、跟踪精度对粒子数目要求高等问题,提出一种基于高斯粒子群优化粒子滤波的弱小目标检测前跟踪算法。利用高斯粒子群优化算法优化重采样后的粒子集,使粒子集朝着后验概率密度分布取值较大的区域运动,增加粒子的多样性,克服了粒子贫乏问题,并在保证跟踪精度的前提下降低了跟踪所需要的粒子数目,提高了标准粒子滤波算法的检测和跟踪性能。同时,建立了检测前跟踪系统的观测模型和系统模型,对基于标准粒子滤波检测前跟踪算法和优化算法进行仿真,仿真实验结果表明高斯粒子群优化粒子滤波的检测前跟踪算法相比基于标准粒子滤波的检测前跟踪算法具有更好的检测与跟踪性能。 相似文献
14.
为了提高目标跟踪过程中粒子滤波结果的精度,将边缘粒子滤波算法应用于目标跟踪。首先将目标运动状态向量划分为线性和非线性两个子向量,然后,采用卡尔曼滤波方法处理线性状态子向量,采用粒子滤波方法处理非线性状态子向量。使用边缘粒子滤波算法和标准粒子滤波算法对目标进行跟踪仿真。仿真结果表明:将边缘粒子滤波算法应用在目标跟踪过程中,能够取得更高的跟踪精度;时间复杂度增加仅6%;在粒子数相对较少的条件下,仍能够保持较好的滤波性能。 相似文献
15.
基于自适应粒子群优化的新型粒子滤波在目标跟踪中的应用 总被引:8,自引:0,他引:8
针对基于粒子群优化的粒子滤波(PSO-PF)算法精度不高,实时性差,难以满足雷达机动目标跟踪的需求,提出一种基于动态邻域自适应粒子群优化的粒子滤波(DPSO-PF)算法.该算法可以动态调整粒子邻域环境,其中每个粒子按照邻域的环境和自身的位置信息自适应地调整相互间的邻域粒子数量,使邻域粒子数量更为合理,达到寻优能力与收敛速度的最佳平衡.最后利用不同模型对该算法进行了仿真实验,实验结果表明所提出的算法能够提高雷达机动目标跟踪的实时性和精确性. 相似文献
16.
传统高斯粒子滤波算法(Gaussian particle Filter,GPF)中,粒子的重要性密度函数是由高斯滤波器结合当前最新量测来构建的.由于传统高斯滤波器在量测更新阶段直接利用量测对状态进行线性更新,在某些条件下会导致所构建的重要性密度函数并不能很好地近似状态真实分布.为了解决这一问题,结合递推更新的思想,本文推导出了递推更新高斯滤波器(recursive update Gaussian filter,RUGF)的一般结构.并在此基础上,选用RUGF来构建粒子滤波的重要性密度函数,从而提出了基于递推更新的高斯粒子滤波算法(recursive update gaussian particle filter,RUGPF).仿真表明,在非线性系统状态估计问题中,递推更新可以很好的利用量测信息,相比于传统的GPF,本文所提出的RUGPF滤波算法可以提供更高精度的估计结果. 相似文献
17.
针对基本粒子群优化算法的"早熟"及参数设置的缺陷,提出基于变尺度的粒子群优化算法。该算法利用变尺度法局部收敛快的特点,使改进后的算法能有效地跳出局部最优解,快速地搜索到全局最优解。仿真结果表明新算法提高了最优解的精度和优化效率;同时验证了新算法有较好的鲁棒性,然后把改进算法成功应用于非线性方程组求解问题。 相似文献
18.
Solving systems of nonlinear equations is a difficult problem in numerical computation. For most numerical methods such as the Newton’s method for solving systems of nonlinear equations, their convergence and performance characteristics can be highly sensitive to the initial guess of the solution supplied to the methods. However, it is difficult to select a good initial guess for most systems of nonlinear equations. Aiming to solve these problems, Conjugate Direction Particle Swarm Optimization (CDPSO) was put forward, which introduced conjugate direction method into Particle Swarm Optimization (PSO)in order to improve PSO, and enable PSO to effectively optimize high-dimensional optimization problem. In one optimization problem, when after some iterations PSO got trapped in local minima with local optimal solution , conjugate direction method was applied with as a initial guess to optimize the problem to help PSO overcome local minima by changing high-dimension function optimization problem into low-dimensional function optimization problem. Because PSO is efficient in solving the low-dimension function optimization problem, PSO can efficiently optimize high-dimensional function optimization problem by this tactic. Since CDPSO has the advantages of Method of Conjugate Direction (CD) and Particle Swarm Optimization (PSO), it overcomes the inaccuracy of CD and PSO for solving systems of nonlinear equations. The numerical results showed that the approach was successful for solving systems of nonlinear equations. 相似文献