首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
基于粒子群模糊C-均值聚类的图像分割算法   总被引:1,自引:0,他引:1       下载免费PDF全文
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。  相似文献   

2.
基于粒子群优化的模糊C-均值聚类改进算法   总被引:3,自引:3,他引:3  
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM.该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值.仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果.  相似文献   

3.
基于改进粒子群算法的聚类算法   总被引:3,自引:0,他引:3  
K-均值算法是一种传统的聚类分析方法,具有思想与算法简单的特点,因此成为聚类分析的常用方法之一.但K-均值算法的分类结果过分依赖于初始聚类中心的选择,对于某些初始值,该算法有可能收敛于一般次优解.在分析K-均值算法和粒子群算法的基础上,提出了一种基于改进的粒子群算法的聚类算法.该算法将局部搜索能力强的K均值算法和全局搜索能力强的粒子群算法结合,提高了K均值算法的局部搜索能力、加快了收敛速度,有效地阻止了早熟现象的发生.实验表明该聚类算法有更好的收敛效果.  相似文献   

4.
基于混沌粒子群和模糊聚类的图像分割算法*   总被引:1,自引:2,他引:1  
模糊C-均值聚类算法(FCM)是一种结合模糊集合概念和无监督聚类的图像分割技术,适合灰度图像中存在着模糊和不确定的特点;但该算法受初始聚类中心和隶属度矩阵的影响,易陷入局部极小.利用混沌非线性动力学具有遍历性、随机性等特点,结合粒子群的寻优特性,提出了一种基于混沌粒子群模糊C-均值聚类(CPSO-FCM)的图像分割算法.实验证明,该方法不仅具有防止粒子因停顿而收敛到局部极值的能力,而且具有更快的收敛速度和更高的分割精度.  相似文献   

5.
基于该粒子群算法的聚类算法   总被引:1,自引:0,他引:1       下载免费PDF全文
提出了一种基于改进的粒子群算法的聚类方法。该算法是将局部搜索能力强的K-均值算法和基于遗传算法的交叉、变异操作同时结合到粒子群算法中。既提高了粒子群算法的局部搜索能力、加快了收敛速度,同时因为加入了交叉、变异操作,有效地防治了早熟收敛现象的发生。实验表明该聚类算法有更好的收敛效果。  相似文献   

6.
针对传统的模糊C-均值聚类算法对初始聚类中心较敏感、易陷入局部最优的缺点,将粒子群优化算法和FCM算法相结合,提出一种改进的模糊聚类算法。该算法利用粒子群算法的全局搜索能力代替FCM算法寻找初始聚类中心,使其跳出局部最优,实现模糊聚类。主要从反映数据集分类的类内紧致性程度和类间分离性程度的角度考虑,重新设计适应度函数。实验结果表明,提出的算法在聚类正确率和有效性指标上有更好的效果。  相似文献   

7.
一种新的聚类算法--粒子群聚类算法   总被引:12,自引:0,他引:12  
在分析K均值聚类算法存在不足的基础上,该文提出了一种新的聚类算法:基于粒子群的K均值聚类算法。实验结果证明,该算法有很好的全局收敛性,不仅有效地克服了传统的k均值算法易陷入局部极小值和对初始值敏感的问题,而且具有较快的收敛速度。  相似文献   

8.
利用粒子群优化(PSO)算法全局寻优的特点,很大程度上避免了模糊C-均值聚类(FCM)算法对初值敏感、易陷入局部收敛的缺陷.利用收敛速度快的K均值聚类法得到的聚类中心作为PSO算法初始聚类中心的参考,提出一种新的模糊C-均值聚类算法Improved PSO FCM.实验结果表明,论文算法提高了FCM的搜索能力,聚类更为准确,效率更高.  相似文献   

9.
提出一种基于模糊C-均值算法和粒子群优化算法的混合聚类算法,该算法利用粒子群优化算法全局寻优的特点,有效地克服了模糊C-均值算法对初始值敏感、易陷入局部最优的缺点.实验表明,该算法具备良好的聚类效果.  相似文献   

10.
基于模拟退火算法思想的粒子群优化算法   总被引:30,自引:0,他引:30  
粒子群优化是由Eberhart博士和Kennedy博士于1995年根据鸟或鱼群居社会行为而提出的。本文提出了4种改进的算法,特别推荐结合模拟退火算法思想提出的一种新算法。经过与基本粒子群算法比较测试,证实它是一种简单有效的算法。  相似文献   

11.
在对基本PSO算法进行分析的基础上,针对PSO算法中的早熟收敛问题,提出了一种基于聚类分析的PSO算法(CPSO)。CPSO算法保证了微粒种群的多样性,使微粒能够有效地进行全局搜索。并证明了它依概率收敛于全局最优解。最后以典型的基准优化问题进行了仿真实验,验证了CPSO的有效性。  相似文献   

12.
小生境粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对粒子群算法容易早熟收敛和后期收敛速度慢的缺点,结合进化论中小生境技术,提出了小生境粒子群优化算法。通过粒子之间的距离找到具有相似距离的粒子个体组成小生境种群,然后在该种群里面利用粒子群优化算法进化粒子,所有个体经过其小生境群体的进化之后,找到最优的个体存入到下一代的粒子群中,直到找到满意的适应值为止。最后利用Shaffer函数验证了该算法的性能,并且与其他算法进行比较,结果表明该文算法能获得比较好的解,收敛成功率高,并且代价也比较小。  相似文献   

13.
一种高效的改进粒子群优化算法   总被引:6,自引:1,他引:6  
提出了一种高效的改进的粒子群优化策略,把整个群体分为几个子群体,进行子群体的专业化社会分工与信息交换,该策略在提高算法局部搜索能力的同时也兼顾了全局搜索能力。测试表明,与现有方法比较,该方法全局寻优的精度与速度有明显提高。  相似文献   

14.
PSO优化算法演变及其融合策略   总被引:2,自引:3,他引:2  
分析了粒子群优化算法公式的演变以及相关参数,包括基本算法、加惯性权重的PSO以及加收缩因子的PSO。并对它与其它智能算法(模拟退火、遗传算法、蚁群算法等)的融合进行了探讨,指出目前PSO的数学研究范畴仅限于收敛性的研究。  相似文献   

15.
内嵌区域震荡搜索的粒子群优化算法   总被引:1,自引:0,他引:1  
针对粒子群优化算法早熟收敛现象,提出了一种改进的粒子群优化算法。新算法在粒子群中的每个粒子吸引子的基础上引入了区域震荡搜索因子。每个粒子在协同收敛的同时,震荡搜索粒子极值位置周围区域,增加种群的多样性,提升算法的全局寻优能力,有效避免算法陷入局部收敛。仿真结果表明,改进后的算法在收敛精度上得到显著的改善。  相似文献   

16.
针对粒子群算法的“早熟”,进化后期收敛速度慢及精度低等问题,提出了一种改进的PSO算法。为保证初始群体的遍历性,改进算法首先利用了信息熵产生初始群体;为提高进化过程中群体的多样性,将遗传算法中杂交、变异的思想融入了算法中;为提高算法晚期的收敛速度,将模拟退火算法中退火的思想引入到杂交过程中。该算法与其他改进算法进行数值比较,仿真实验表明,提出的算法抗“早熟”能力强,搜索精度高,稳定性好。  相似文献   

17.
IPSO算法用于确定型单机场地面等待问题   总被引:3,自引:1,他引:2       下载免费PDF全文
针对单机场地面等待问题,已有人采用遗传算法进行了求解,但其搜索最优解的能力差,且搜索效率低。粒子群优化(PSO)算法对该问题解空间及粒子编码设计难度较大,因而还未曾用于解决地面等待问题。针对确定型单机场地面等待数学模型,分别采用基本PSO、线性递减惯性权重加收缩因子PSO、随机惯性权重加收缩因子PSO、模拟退火PSO算法四种方法对该模型进行优化求解,并和采用遗传算法的结果进行了对比,仿真实验表明这四种方法在寻优能力和寻优效率方面显著提高,其中模拟退火PSO方法最好。  相似文献   

18.
新型分阶段粒子群优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对粒子群优化算法的“早熟”问题,提出了一种新型分阶段粒子群优化算法。该算法通过调整惯性权重和加速系数使粒子自组织地跟踪局部吸引域和全局吸引域来扩大粒子的搜索空间和提高粒子的收敛精度,同时根据粒子处于不同的阶段实施相应的变异策略来增加种群的多样性。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。  相似文献   

19.
一种新的基于粒子群和模拟退火的聚类算法   总被引:3,自引:0,他引:3       下载免费PDF全文
提出了一种新的基于粒子群和模拟退火的聚类算法。每个粒子作为聚类问题的一个可行解组成粒子群,粒子的位置由聚类中心向量表示。为避免粒子群陷入局部最优解,结合聚类问题的实际特点,提出了利用模拟退火的概率突跳性的两个解决方案。实验结果表明,新算法增强了全空间的搜索能力,性能优于粒子群算法和传统的K-means算法,具有较好的收敛性,是一种有效的聚类算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号