首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
通过对典型沙地土样的分析试验和室内模型试验,对未加筋风砂土和土工格栅的15种不同加筋条件下风砂土地基扩展基础的上拔承载性能进行了试验研究。根据试验结果,确定了加筋风砂土地基扩展基础承受上拔荷载的计算模式和理论计算公式。研究了分别由风砂土和土工格栅引起的上拔承载能力,按计算值和实测值分项进行了对比分析,提出了有效的土工格栅加筋形式,即平铺一层和二层土工格栅。提出了进一步需要研究的“锚固长度”问题。  相似文献   

2.
承受上拔荷载的扩展基础,可以用上拔位移或上拔荷载作为设计控制条件。在典型沙漠地区进行调研和现场采取土样,进行土工格栅与风砂土的摩擦特性试验,通过室内模型试验研究了上拔荷载作用下土工格栅加筋风砂土地基扩展基础的力学性能,包括荷载、位移、变形、破坏机理和承载能力的研究,提出了有效的土工格栅加筋形式:平铺一层和二层土工格栅。在上述研究基础上,对上拔位移机理进行了分析研究,提出了上拔位移计算模型和上拔位移控制的分析计算方法。  相似文献   

3.
在典型沙漠地区进行了调研和现场采取土样,对风砂土样的基本性质进行了试验研究,研究了土工格栅与风砂土的摩擦特性,提出了土工格栅改良加固沙漠地区风砂土力学性能的方法.通过室内模型试验,研究了在上拔荷载作用下加筋风砂土地基扩展基础的力学性能,包括应力、位移、变形、破坏机理和承载能力的研究.  相似文献   

4.
在典型沙漠地区进行了调研和现场采取土样,对风砂土样的基本性质进行了试验研究,研究了土工格栅与风砂土的摩擦特性,提出了土工格栅改良加固沙漠地区风砂土力学性能的方法。通过室内模型试验,研究了在上拔荷载作用下加筋风砂土地基扩展基础的力学性能,包括应力、位移、变形、破坏机理和承载能力的研究。  相似文献   

5.
进行了下压荷载作用下加筋风砂土地基扩展基础的承载试验,研究了土工格栅及风砂土的剪切与拉拔摩擦特性,进行了14种不同加筋条件下的模型试验,加筋后下压承载力高于未加筋承载力的11.0%~453.0%。相同埋深时,长条形闭口箱型和双层土工格栅的承载力较高,加筋后的抗位移性能增强。加筋风砂土的承载力是由土体的压缩和抗剪能力、格栅与土的相互摩擦、格栅对土体的约束作用产生的。建立了加筋风砂土地基扩展基础承受下压荷载的理论计算公式,计算值与实测值基本吻合。提出了加强风砂土承压性能的有效方法为铺设长条形闭口箱型土工格栅和双层土工格栅。  相似文献   

6.
加筋风积沙地基直柱扩展基础抗拔试验   总被引:1,自引:0,他引:1  
通过3个直柱扩展基础在风积沙和加筋风积沙两种地基条件下的上拔荷载、上拔和水平力组合荷载6个工况的现场试验,研究风积沙、加筋风积沙地基直柱扩展基础抗拔承载性能和机理。试验结果表明:①上拔荷载下,风积沙和加筋风积沙地基均呈整体突变性破坏;②上拔和水平力组合工况下,风积沙、加筋风积沙地基直柱扩展基础的水平荷载主要由基础自重承担,水平位移决定了基础抗拔极限承载性能;③土工格栅可提高风积沙地基抗拔和抗水平力承载性能,上拔、上拔和水平力组合工况下基础的上拔极限承载力较风积沙地基分别提高了21.7%和32.8%。  相似文献   

7.
上拔与水平力组合作用下加筋风积沙斜柱扩展基础试验   总被引:1,自引:0,他引:1  
在土工格栅加筋风积沙、土工网垫加筋风积沙以及未加筋风积沙地基条件下,开展了3个不同尺寸斜柱扩展基础上拔水平力组合荷载作用下9个工况的现场试验。根据基础的顶部荷载与位移、基底土压力变化以及地表裂缝分布情况,分析了基础尺寸、加筋材料及其铺设方式对风积沙斜柱扩展基础承载性能的影响规律,研究了加筋风积沙地基的破坏机理。结果表明:加筋风积沙斜柱扩展基础上拔水平力组合荷载作用下①其承载机理是基础底板上方地基压缩挤密-塑性区出现并进一步发展-局部剪切破坏的渐进破坏过程,且地基破裂面具有不对称性;②土工格栅提高了风积沙地基的抗拔和抗倾覆的承载能力和抗变形能力,且铺设层间距越小,改善效果越好;土工网垫由于其易变形特点,不能提高甚至降低了风积沙地基承载能力;③降低基础露头高度、增加基础埋深、扩大基础底板尺寸均可有效提高基础上拔和水平承载力。  相似文献   

8.
加筋风积砂地基承载力试验研究及计算分析   总被引:2,自引:0,他引:2  
针对沙漠地区风积砂土特殊的物理力学性质,以土工格栅为加筋材料对风积砂土进行加固。通过室内模型试验,对未加筋的风积砂土和15种布筋方式下的加筋风积砂地基承载力进行了试验研究。测定了各种布筋方式下加筋风积砂土的极限破坏荷载,分析了加筋土的变形以及应力扩散情况。根据试验结果,总结了不同布筋方式及不同埋深条件下,加筋风积砂地基承载力的变化规律,并推荐片式双层格栅为施工中有效的布筋方式,此布筋方式下的加筋风积砂地基承载力较风积砂地基承载力增加1.2倍。提出了加筋风积砂土的强度机理和破坏模式,建立了无埋深条件下片式单层格栅加筋风积砂地基承载力的计算公式。经试验验证,所得结果具有实用价值。  相似文献   

9.
为了解低填方软土路基中土工格栅对地基变形的影响,在广州市东新高速公路试验段进行了现场试验。试验路段内填方高度均在3m以下,分别进行了天然地基快速填筑试验、天然地基结合土工格栅加筋及袋装砂井处理地基结合土工格栅加筋等试验,通过对地基变形、土工格栅受力的监测,获得基础参数,进一步分析低填方条件下土工格栅在地基变形、受力特征等方面的作用特征。本文是该段试验成果的一部分,对于超软地基低路堤的设计和施工都有一定借鉴意义。  相似文献   

10.
杨坤 《建筑与环境》2012,(5):125-127
土工格栅与土的界面作用特征直接影响加筋高填方路堤的安全与稳定性。以河北省邢汾高速公路加筋高填方路堤工程为背景.通过室内直剪试验.分析不同类型的土工格栅在砂土中的界面摩擦特性作用。试验表明随着上覆荷栽的增加,土工格栅与砂土的摩擦特性加强。双向土工格栅与砂土之间的界面凝聚力要高于单向土工格栅.而其界面摩擦系数相差不大。通过对格栅界面特性的研究.给土工合成材料的生产建设性的意见并为实际工程选用格栅材料提供参考。  相似文献   

11.
沙漠风积沙地基结构松散、稳定性差、承载力低,利用水泥作为固化剂固化稳定风积沙,形成水泥固化风积沙地基是改善其不良工程特性的有效手段。将取自内蒙古库布齐沙漠的现场风积沙重塑为3%含水率的试验用风积沙,向其中掺入6%普通硅酸盐水泥经充分拌和形成水泥固化风积沙填料,完成了水泥固化风积沙地基中9个扩展基础模型抗拔试验。结果表明,风积沙水泥固化方法可显著提高风积沙抗拔承载性能。上拔荷载作用下,当水泥固化风积沙扩展基础抗拔深度与底板边长比值小于3.5时,其荷载–位移曲线呈2阶段变化:初始弹性段—峰值荷载、峰值荷载后破坏段,极限抗拔承载力对应的位移与底板边长比值变化范围为0.04%~1.05%,平均0.54%。按"土重法"确定的水泥固化风积沙"上拔角"远大于天然风积沙。  相似文献   

12.
扩底桩的抗拔承载力试验及计算   总被引:17,自引:0,他引:17  
通过对干旱地区黄土中扩底桩的抗拔试验 ,测试了扩底桩在上拔荷载、水平荷载作用下的上拔位移和水平位移以及位移与荷载的关系。研究了极限上拔承载力和抗拔桩的破坏机理。在相同条件下 ,增加扩大端的高度对提高桩的极限上拔承载力是有效的 ,破坏机理为土的减压软化和损伤软化的渐进性破坏。提出了极限上拔承载力的理论计算模式 ,并与实测资料进行了对比 ,理论计算结果与实测值是吻合的  相似文献   

13.
This paper aims at developing analytical solutions for estimating the ultimate bearing capacity of geogrid reinforced soil foundations (RSF) for both sand and silty clay soils. Failure mechanisms for reinforced soil foundations are proposed based on the literature review and the results of experimental study on model footing tests conducted by the authors. New bearing capacity formulas that incorporate the contribution of reinforcements to the increase in bearing capacity are then developed for both reinforced sand and silty clay soil foundations based on the proposed failure mechanisms. The predicted bearing capacity values are compared with the results of laboratory model tests on reinforced sand and silty clay soil. The proposed analytical solutions were also verified by the results of large-scale model tests conducted by the authors for reinforced silty clay and the data reported in the literature. The predicted bearing capacity values from analytical solutions are in good agreement with the test results.  相似文献   

14.
扩展基础加筋风积砂地基室内模型试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
李驰  刘霖 《岩土工程学报》2003,25(4):441-444
对扩展基础加筋风积砂地基进行室内模型试验研究,分析了不同布筋方式下加筋风积砂土体在下压荷载作用下的应力场、变形、破坏模式及承载力变化规律,提出加筋风积砂土体在下压荷载作用下的强度机理,并比较各种布筋方式的适用性。  相似文献   

15.
Bearing capacity of square footings on geosynthetic reinforced sand   总被引:2,自引:0,他引:2  
The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systematic model studies. A steel tank of size 900 × 900 × 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号