首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
分散液液微萃取-分光光度法测定痕量钒   总被引:2,自引:0,他引:2       下载免费PDF全文
在乙酸-乙酸钠缓冲介质中,以1-(2-吡啶偶氮)-2-萘酚(PAN)为螯合剂,三氯甲烷为萃取剂,乙醇为分散剂萃取溶液中痕量钒,用分光光度法测定。优化了影响萃取效率和测定结果的因素,如萃取剂、分散剂的选择和用量;溶液pH值;螯合剂的浓度;萃取时间等。最佳实验条件下,方法的富集倍数达50倍,线性范围8.0~180μg/L,检出限0.79μg/L。应用于测定矿石和水样中痕量钒,回收率在97%~104%之间。  相似文献   

2.
利用1-(2-吡啶偶氮)-2-萘酚(PAN)与镓反应生成红色络合物的特性,建立了光度法测定钒钛磁铁矿中镓的方法。实验表明:于25 mL比色管中,依次加入2.0 mL KHP-HCl缓冲溶液(pH 3.2)、4.0 mL 0.5 g/L PAN溶液、3.0 mL 95%乙醇,用水定容后反应10 min,用1 cm比色皿,于545 nm处采用分光光度法进行测定,镓的质量浓度在0.05~3 μg/mL范围内符合比尔定律,方法检出限为0.033 μg/mL,表观摩尔吸收系数ε=3.0×104 L·mol-1·cm-1。将GBW 07226a钒钛磁铁矿精矿一号和GBW 07224钒钛磁铁矿原矿一号样品经氢氧化钠和过氧化钠碱熔、水浸取、过滤、酸化还原铁等步骤后,采用乙酸丁酯萃取、水反萃取,使镓与大量基体元素分离,再采用方法对样品中痕量镓进行测定,结果与认定值一致,相对标准偏差(RSD,n=3)小于15%。  相似文献   

3.
利用电感耦合等离子体质谱法(ICP-MS)测定5N~6N(纯度为99.999%~99.999 9%)高纯硒中痕量杂质元素时,硒的基体效应明显,影响结果的准确性。采用硝酸溶解高纯硒,经4-甲基-2-戊酮选择性萃取硒后,对水相进行测定,建立了电感耦合等离子体质谱法测定高纯硒中的Li、Be、B、Sc、Ti、V、Cr、Mn、Co、Ni、Cu、Zn、As、Sr、Cd、Ba、Pb共17种痕量杂质元素的方法。实验表明,萃取时当盐酸浓度为7mol/L、MIBK体积为20mL和萃取时间为2min时,水相中硒的质量浓度低于5mg/L,此时硒基体对测定的影响可忽略。方法中各元素校准曲线的线性关系均大于0.999 5,各待测元素的方法检出限为0.2~7.0ng/g。按照实验方法对高纯硒样品中这17种杂质元素进行测定,测定结果的相对标准偏差(RSD,n=6)在5.0%~11.2%之间,加标回收率在91%~103%之间。  相似文献   

4.
浊点萃取-邻二氮菲分光光度法测定海水中痕量铁   总被引:1,自引:0,他引:1       下载免费PDF全文
宋兴良  梁恕坤 《冶金分析》2010,30(10):70-73
以邻二氮菲(Phen)为显色剂、聚乙二醇6000(PEG6000)为表面活性剂,建立了浊点萃取-分光光度法测定海水中痕量铁的方法。该方法基于表面活性剂的浊点现象,Fe2+与邻二氮菲(Phen)生成稳定络合物Fe(Phen)32+后被定量萃取进入富胶束相中,从而实现与基体的分离,然后萃取相经适当的处理并采用分光光度法进行测定。考察了显色剂浓度、显色温度、萃取时间和PEG6000用量等条件对浊点萃取-分光光度法测定灵敏度的影响。在优化条件下,本法对铁的检出限为4.1×10-3μg/mL(富集倍数为18)。该方法应用于海水中痕量铁的分析时,测定值与ICP-AES法的结果相一致,相对标准偏差(RSD)为3.8%~4.5%,加标回收率在86%与95%之间。  相似文献   

5.
采用国家标准方法ICP-MS法测定高纯金中的杂质元素时,利用传统湿法消解样品后,大量金基体对杂质元素测定产生干扰和抑制作用,影响测定结果的准确度。实验建立微波消解-萃取—ICP-MS法测定高纯金中杂质元素的方法,并对微波消解-萃取条件进行优化,提高金溶解率及金萃取率,消除金基体对杂质元素测定的干扰。该方法可同时测定40种杂质元素,检出限为0.01~0.29μg/g,测定结果相对标准偏差(n=6)为1.29%~4.18%,加入标准物质回收率为86.94%~115.55%,准确度和精密度良好。  相似文献   

6.
钴是生命体必需的微量元素,研究建立水样中钴的测定方法具有重要意义。在pH 5.0的醋酸-醋酸钠缓冲介质中,于60℃水浴中加热10min, 螯合剂2-(5-溴-2-吡啶偶氮)-5-二甲氨基苯胺(5-Br-PADMA)与钴(II)反应生成配位比为2∶1的疏水性螯合物Co(II)-5-Br-PADMA,其最大吸收波长位于611nm,用非离子表面活性剂TritonX-114为萃取剂进行浊点萃取(CPE),将该疏水性螯合物萃取到表面活性剂胶束相中,在相分离之后,以0.45mL 2mol/L HCl-乙醇溶液溶解胶束相,转入光程为5mm的自制石英吸收池中,以单模He-Ne激光器(λ=632.8nm)做激发和探测光束进行热透镜光谱法(TLS)测定,建立了浊点萃取-激光热透镜光谱法(CPE-TLS)测定超痕量钴的方法。在优化条件下,热透镜光谱信号强度与钴(II)质量浓度在0.40~6.0ng/mL范围内呈良好的线性关系,相关系数为0.9978,检出限为0.05ng/mL。按富集前后溶液体积比值计算其浓缩因子为22。将实验方法用于湖水和温泉水中钴含量的测定,结果的相对标准偏差(RSD,n=6)小于4%;结果与电感耦合等离子体质谱法(ICP-MS)基本一致;加标回收率在96%~101%之间。  相似文献   

7.
以双硫腙-非离子型表面活性剂Triton X-114为浊点萃取体系分离富集铋,在优化了溶液酸度、浊点萃取温度等实验条件下,应用氢化物发生-原子荧光光谱仪测定富集相中铋的含量。结果表明,铋的萃取率为90.5%,线性范围为0.025~2.0μg/L,回归方程为If=21.51ρ(μg/L)-0.88(r=0.999 7),RSD<7%(n=6),检出限为0.015μg/L。该方法用于水样中铋的测定,加标回收率在89%~93%之间。  相似文献   

8.
研究了在pH 11.0的NH3.H2O-NH4Cl缓冲介质中,乳化剂OP存在下,水杨醛缩-5-碘-8-氨基喹啉(SAIAQ)与镓(反应形成稳定络合物的最佳条件。络合物的最大吸收波长为470 nm,表观摩尔吸光系数为1.85×105,络合物的组成为镓(∶SAIAQ=1∶2,镓质量浓度在0~400μg/L范围内符合比尔定律。本法结合乙酸丁酯萃取分离,已应用于粉煤灰中痕量镓的测定,获得满意的结果。  相似文献   

9.
左鸿毅 《冶金分析》2022,42(6):37-44
锌精矿中铟含量是贸易结算的重要指标,准确测定锌精矿中铟含量具有重要的指导意义。以盐酸-氟化铵-硝酸-硫酸溶解样品,在盐酸(1+19)介质中,使用空气-乙炔火焰,以303.9 nm为测定波长,建立了火焰原子吸收光谱法测定锌精矿中0.002 0%~0.120%(质量分数,下同)铟的方法。溶样试验表明,对于碳含量较低的样品,采用20 mL盐酸-0.2 g氟化铵-5 mL硝酸-5 mL硫酸可将样品溶解完全;若溶样后溶液有黑渣,说明样品中碳含量较高,则需再继续加入2 mL高氯酸进行溶样。考察了锌基体对测定的影响。结果表明,当锌基体质量浓度大于3.25 mg/mL时,锌基体对测定的干扰较为显著;当锌基体质量浓度不大于3.25 mg/mL时,锌基体对测定的干扰可忽略。对于不同铟含量的样品,实验采用不同的方法进行处理以消除锌基体对测定的干扰。对于高含量的铟(0.050%~0.120%),采取溶样后将溶液体积稀释为原来的2倍后直接测定的方法;对于低含量的铟(0.002 0%~0.050%),须在溶样后先采用乙酸丁酯对铟进行萃取分离再进行测定。干扰试验表明,无论是测定高含量铟还是低含量铟,样品中的其他共存元素均不干扰测定;测定液中残留的少量硫酸和硝酸均对测定无干扰。实验表明,铟的质量浓度在0.50~10.00 μg/mL范围内与其对应的吸光度呈线性关系,相关系数为0.999 7,方法检出限为0.088 μg/mL,定量限为0.29 μg/mL。采用实验方法对锌精矿样品中的铟进行测定,结果表明,高、低铟含量水平的测定结果分别与萃取分离分光光度法或电感耦合等离子体原子发射光谱法(ICP-AES)基本一致,相对标准偏差(n=11)为2.1%~5.2%。  相似文献   

10.
在0.57~1.43 mol/L硝酸介质中, 用甲基异丁基酮(MIBK)萃取钼酸铵与磷生成的磷钼杂多酸, 使磷与基体铁分离后, 选择波长213.618 nm的谱线作为分析线, 采用电感耦合等离子体原子发射光谱法(ICP-AES)测定了高纯铁中磷的含量。校准曲线的线性回归方程为I= 15.04ρ+0.012 1, 相关系数为0.999 6, 方法的检出限为0.020 mg/L。通过萃取分离和选择合适的谱线作为磷的分析线, 基体和共存元素对测定没有干扰。方法用于多个高纯铁标准物质中磷的测定, 测定值与认定值一致, 测定结果的相对标准偏差(n=10)在0.54%~2.9%之间。方法适用于高纯铁中0.000 10%~0.010%磷的测定。  相似文献   

11.
建立了在p H=5.5的酸度下,使用PMBP-苯溶剂定量萃取化探样品中15种稀土元素,然后用甲酸-8-羟基喹啉溶液反萃取稀土元素,分离后ICP-AES同时测定的新方法。成功解决了盐酸、硝酸、氢氟酸、高氯酸消解后ICP-AES直接测定稀土元素基体成分复杂,质谱干扰严重,方法检出限高等问题,试样用过氧化钠-氢氧化钾熔融后,水提取,过滤,滤渣酸溶,经过沉淀和溶剂萃取等分离富集,对稀土组份进行全分析。方法快速、准确、易操作,其检出限为0.003~0.068 ug/m L,精密度RSD2%。  相似文献   

12.
采用硝酸-双氧水处理钇铁合金样品,以0.3mol/L硝酸为测定介质,选用103Rh和185Re作为内标元素对基体效应和测量信号进行补偿和校正,实现了电感耦合等离子体质谱法(ICP-MS)对钇铁合金中14种稀土杂质元素的测定。通过选择合适的同位素和干扰校正方程消除了质谱干扰;通过选择稀释因子为2000,即控制基体质量浓度为0.5mg/mL进行测定消除了基体效应的影响。在优化的实验条件下,14种稀土元素的校准曲线线性相关系数都在0.9999以上,各元素的检出限为0.003~0.020μg/L。将实验方法应用于钇铁合金样品中稀土杂质的测定,测定结果的相对标准偏差(RSD,n=11)介于0.97%~6.5%之间,加标回收率为96%~104%。采用实验方法对钇铁合金样品进行测定,同时采用基体匹配结合电感耦合等离子体原子发射光谱法(ICP-AES)进行方法对照试验,两种方法测定结果基本一致。  相似文献   

13.
盐酸溶解样品后,将稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁配制成混合标准溶液系列并绘制校准曲线,保持标准溶液系列中稀土总量与试液中稀土总量一致以消除基体效应,采用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定电池级混合稀土金属中稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁。进行了各元素分析谱线的选择,考察了稀土元素对非稀土杂质元素及非稀土杂质元素间的干扰情况。各元素校准曲线线性回归方程的相关系数均不小于0.998 8。按照实验方法测定合成样品中稀土配分镧、铈、镨、钕,测定结果与理论值一致,结果的相对标准偏差(RSD,n=11)不大于3.0%。非稀土杂质铁、硅、锌、镁的检出限为0.001 0%~0.002 8%(质量分数),测定下限为0.005 0%~0.014%(质量分数)。对低锌低镁电池极混合稀土金属样品中非稀土杂质进行测定,测定值与参考值一致,测定结果的相对标准偏差(RSD,n=11)为1.3%~9.0%。按照实验方法测定实际电池级混合稀土金属样品和富镧金属样品中稀土配分镧、铈、镨、钕和非稀土杂质铁、硅、锌、镁,测定值与其他分析方法的结果基本一致。  相似文献   

14.
电感耦合等离子体原子发射光谱法测定钇铁合金中14种稀土杂质元素.用近似基体匹配法校正基体效应的影响,通过共存元素对稀土谱线的干扰实验,优选了测定分析线.考察了基体变化对测定结果的影响.确定了14种稀土元素的测定范围为0.005 0 %~0.20 %,测定结果的相对标准偏差(n=11)为0.88 %~7.20 %,标加回收率为97.44 %~103.28 %.该方法快速,准确,可用于产品的检测.   相似文献   

15.
准确称取0.10 g(精确至0.000 1 g)待分析样品于微波消解罐中,加入3 mL盐酸,将微波消解仪由室温升温到120 ℃并保持5 min,再继续升温到180 ℃并保持15 min进行微波消解,以10 ng/mL Cs溶液为内标,建立了电感耦合等离子体质谱法(ICP-MS)测定氟化铈中13种稀土杂质(La、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)含量的方法。实验表明,13种稀土杂质的线性范围为1.0~100 ng/mL,线性相关系数均不小于0.999 5,方法的检出限为0.002~0.050 μg/g。用所建立方法测定氟化铈粉末样品中La、Pr、Nd、Sm、Gd的结果与电感耦合等离子体原子发射光谱法(ICP-AES)基本一致。将方法应用于氟化铈粉末样品中13种稀土杂质的分析,相对标准偏差(RSD, n=7)均小于5.0%,加标回收率为95%~105%。  相似文献   

16.
采用ICP—AES法直接测定钆铁合金中14种稀土杂质元素,实验对测定元素波长、标准系列配置方式以及进样浓度进行了选择,以基体匹配法校正基体对测定的影响,所测元素的标加回收率为96%-108%,所测元素的相对标准偏差小于3%,可满足生产和检测的需要.  相似文献   

17.
The unique physical and chemical properties of rare earth elements lay the foundation for their extensive application. N,N,N',N' Tetra-octyl-3-oxopentanediamide(TODGA) is excellent in its ability of extracting rare earth elements and it is favored for green initiative. In this paper, the extraction and back-extraction of14 rare earth elements by TODGA were studied. Experiments show that in conditions of 6 mol/L sulfuric acid, the extraction temperature of 25 ℃,the phase ratio of 1:1 and 0.04 mol/LTODGA(aviation kerosene as the diluent), the extraction rates of 14 rare earth elements including lanthanum, cerium, praseodymium,neodymium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, and yttrium were 99.00%-99.73%. Mixed with hydrochloric acid and nitric acid(HCl 3.5 mol/L, HNO_30.5 mol/L), the recoveries of the 14 rare earth elements are 91.52%-99.91% when the extraction temperature is 25 ℃ and the ratio is 1:1. The following application is based on the optimum conditions above with practical samples(from the roasting production line of China North Rare Earth High-tech Company Limited) for extraction and back-extraction experiments. Experiments show that TODGA has excellent enrichment effect on 14 rare earth elements, the extraction rates are 91.36%-99.80%, the back-extraction rates are 87.29%-99.64% and the total recoveries are 81.19%-99.44%.  相似文献   

18.
于丽丽 《冶金分析》2019,39(10):37-42
稀土矿种类繁多,矿物组成复杂,常富含Ca、P、Fe、Ba、Si、S、Mn、Pb等元素,而采用熔融法制样时,富含Fe、Mn、Pb等单质元素的稀土矿样会腐蚀Pt-Au坩埚。试验将稀土矿石与混合熔剂[m(Li2B4O7)∶m(LiBO2)=33∶67]以质量比1∶14(稀释比)混合,再加入1mL 500g/L NH4NO3溶液为氧化剂、0.2mL 100g/L LiBr溶液为脱模剂,在1050℃下熔融制成均匀玻璃片,使用波长色散X射线荧光光谱法(WDXRF)测定轻稀土矿石中La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Y2O3等8种主量稀土氧化物。方法中稀土氧化物的检出限为5~159μg/g。实验方法用于测定两个稀土矿石标准物质GSB04-3549-2019(稀土总量为4.44%)和GSB04-3309-2016(稀土总量为29.09%)中8种稀土氧化物,低品位稀土矿石标准物质(GSB04-3549-2019)中稀土氧化物测定结果的相对标准偏差(RSD,n=7)小于13%,高品位稀土矿石标准物质(GSB04-3309-2016)中稀土氧化物测定结果的相对标准偏差(RSD,n=7)小于2%。选取2个轻稀土矿石样品(稀土总量分别为2.55%和24.64%),按照实验方法进行稀土总量的加标回收试验,回收率为96%~100%。选取2个稀土矿石标准物质GSB04-3550-2019和GSB04-3311-2016以及2个轻稀土矿石样品,按照实验方法测定La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Y2O3,测定值与标准值或电感耦合等离子体原子发射光谱法(ICP-AES)测定值相吻合。实验方法具有较广的适应性,能满足复杂矿物组成轻稀土矿石中主量稀土氧化物的检测。  相似文献   

19.
稀土的提取与分离需要经过硫酸焙烧、水浸、萃取、反萃和碳沉等一系列过程,其中混合RECl3溶液是稀土产业线中的重要中间产品,该混合稀土溶液的REO浓度、配分、密度等理化指标是评价混合RECl3溶液产品质量的主要参数。针对一定存储条件下的混合RECl3溶液,按照国家标准分析方法,结合X射线荧光光谱法(XRF)、电感耦合等离子体原子发射光谱法(ICP-AES)和重量法等手段,对该溶液中的REO浓度、配分、密度等项目进行检测,研究分层取样方式对3项理化指标的影响及变化规律。通过不同存放时间的变化因素绘制混合RECl3溶液中REO浓度、密度的变化曲线,得出混合RECl3溶液的存放时间越长,不同层面取样时这两个指标检测结果差异越大的结论;浅析了混合RECl3溶液取样深度变化对检测结果的影响因素,对混合RECl3溶液从表层到底层按照均匀间隔取样进行检测,得出REO浓度和密度的检测结果呈递增趋势,配分的检测结果呈轻稀土含量减少、重稀土含量增加的趋势等结论;研究了混合RECl3溶液中REO浓度范围差异与存放一定时间内REO浓度的变化趋势,得出REO质量浓度小于50 g/L或大于250 g/L时,其检测结果变化缓慢,REO质量浓度在100~200 g/L时,其检测结果变化快速的结论。深入剖析了分层取样方式影响检测结果的基础理论,此研究可用于指导用于稀土应用产品的混合RECl3溶液的质量控制,对规范混合RECl3溶液的取样操作具有重要的指导意义。  相似文献   

20.
研究了废旧稀土荧光粉酸浸液在环烷酸萃取过程中关于铁、铝杂质的除杂效果,考察环烷酸对于铁、铝、稀土的选择性;有机相组成、氨水浓度、温度对分离效果的影响;水洗温度、水洗相比对水洗效果的影响;盐酸浓度、相比、反萃时间对反萃效果的影响.结果表明:选择环烷酸:异辛醇:磺化煤油体积比为20:20:60、氨水浓度为2 mol/L、温度为20 ℃、氨水滴加速度为3 mL/min时,分离效果较优;水洗温度为40 ℃、相比(A/O)为2时,铁铝稀土的洗脱率分别为1.5%、4.2%和26.4%;反萃剂盐酸浓度为3 mol/L、反萃相比(A/O)为1、反萃时间为20 min时,铁、铝、稀土萃取率分别高达99.5%、99.8%和99.8%.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号