首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using directional antennas in ad hoc networks may introduce the well-known deafness problem, exacerbate the hidden terminal problem and the exposed terminal problem, add difficulty on mobile communication, and distort the operation of existing routing and TCP protocols. Although a lot of studies have been undertaken on the directional MAC protocols, most of them focus only on one or several aspects in their design and performance evaluations, and a comprehensive comparative study is missing. In this paper, we first explore the design space of directional MAC and present a taxonomy of existing schemes. Then, we discuss the major problems in using directional antennas under different category of MAC schemes. After that, we propose coordinated directional medium access control (CDMAC), a novel directional MAC protocol to improve throughput via facilitating the simultaneous contention-free communications for multiple local node-pairs. We evaluate our CDMAC, one representative existing scheme and IEEE 802.11 via extensive ns2 simulations. Our results show CDMAC provides a satisfactory solution to all the major problems and significantly improves the throughput performance.  相似文献   

2.
The hybrid MAC protocol specified by IEEE 802.11ad for millimeter wave wireless LANs consist of carrier sense multiple access/collision avoidance (CSMA/CA) during the contention based access periods (CBAPs) and TDMA during the service periods. To provide channel access during CBAP, the coverage area around the access point (AP) can be divided into several quasi omni (QO) beam levels. When uplink channel access during CBAP is considered, every directional multigigabit station residing within a QO level uses CSMA/CA protocol for getting the transmission opportunity. With equal beam width receive QO levels at the AP, we present an analytical model to compute the uplink throughput of the network in the CBAP, by closely following the 802.11ad MAC protocol specifications. We demonstrate that PHY layer MCS (modulation and coding scheme) dependent adaptive selection of QO levels can improve the throughput performance. In the second part of the paper, we consider that PCP/AP can have at most three radios, each tuned to operate in non-overlapping frequency bands as specified by 802.11ad PHY. We establish that such an arrangement can lead to concurrent transmissions in the network and improve the uplink throughput performance.  相似文献   

3.
On designing MAC protocols for wireless networks using directional antennas   总被引:1,自引:0,他引:1  
We investigate the possibility of using directional antennas for medium access control in wireless ad hoc networks. Previous research in ad hoc networks typically assumes the use of omnidirectional antennas at all nodes. With omnidirectional antennas, while two nodes are communicating using a given channel, MAC protocols such as IEEE 802.11 require all other nodes in the vicinity to remain silent. With directional antennas, two pairs of nodes located in each other's vicinity may potentially communicate simultaneously, increasing spatial reuse of the wireless channel. Range extension due to higher gain of directional antennas can also be useful in discovering fewer hop routes. However, new problems arise when using directional beams that simple modifications to 802.11 may not be able to mitigate. This paper identifies these problems and evaluates the tradeoffs associated with them. We also design a directional MAC protocol (MMAC) that uses multihop RTSs to establish links between distant nodes and then transmits CTS, DATA, and ACK over a single hop. While MMAC does not address all the problems identified with directional communication, it is an attempt to exploit the primary benefits of beamforming in the presence of some of these problems. Results show that MMAC can perform better than IEEE 802.11, although we find that the performance is dependent on the topology and flow patterns in the system.  相似文献   

4.
Coskun  Mehmet B.   《Ad hoc Networks》2008,6(6):860-877
Designing a medium access control (MAC) protocol that simultaneously provides high throughput and allows individual users to share limited spectrum resources fairly, especially in the short-term time horizon, is a challenging problem for wireless LANs. In this paper, we propose an efficient cooperative MAC protocol with very simple state information that considers only collisions, like the standard IEEE 802.11 MAC protocol. However, contrary to the IEEE 802.11 MAC, the cooperative MAC gives collided users priority to access the channel by assigning them shorter backoff counters and interframe-spaces than users who did not participate in the collision event. In other words, collided users are the only ones allowed to transmit in the following contention period. For the cooperative MAC protocol, we utilize an analytical throughput model to obtain the optimal parameter settings. Simulation results show that the cooperative MAC provides significant improvement in short-term fairness and access delay, while still providing high network throughput.  相似文献   

5.
《Ad hoc Networks》2007,5(2):145-161
Directional antennas have the potential to significantly improve the throughput of a wireless ad hoc network. At the same time, energy consumption can be considerably reduced if the network implements per-packet transmission power control. Typical MAC protocols for ad hoc networks (e.g., the IEEE 802.11 Ad Hoc mode) were designed for wireless devices with omnidirectional antennas. When used with directional antennas, such protocols suffer from several medium access problems, including interference from minor lobes and hidden-terminal problems, which prevent full exploitation of the potential of directional antennas. In this paper, we propose a power-controlled MAC protocol for directional antennas that ameliorates these problems. Our protocol allows for dynamic adjustment of the transmission power for both data and clear-to-send (CTS) packets to optimize energy consumption. It provides a mechanism for permitting interference-limited concurrent transmissions and choosing the appropriate tradeoff between throughput and energy consumption. The protocol enables nodes to implement load control in a distributed manner, whereby the total interference in the neighborhood of a receiver is upper-bounded. Simulation results demonstrate that the combined gain from concurrent transmissions using directional antennas and power control results in significant improvement in network throughput and considerable reduction in energy consumption.  相似文献   

6.
One fundamental issue in high-speed wireless local area networks (LANs) is to develop efficient medium access control (MAC) protocols. In this paper, we focus on the performance improvement in both MAC layer and transport layer by using a novel medium access control protocol for high-speed wireless LANs deploying carrier sense multiple access/collision avoidance (CSMA/CA). We first present a recently proposed distributed contention-based MAC protocol utilizing a Fast Collision Resolution (FCR) algorithm and show that the proposed FCR algorithm provides high throughput and low latency while improving the fairness performance. The performance of the FCR algorithm is compared with that of the IEEE 802.11 MAC algorithm via extensive simulation studies on both MAC layer and transport layer. The results show that the FCR algorithm achieves a significantly higher efficiency than the IEEE 802.11 MAC and can significantly improve transport layer performance.  相似文献   

7.
IEEE 802.11, the standard of wireless local area networks (WLANs), allows the coexistence of asynchronous and time-bounded traffic using the distributed coordination function (DCF) and point coordination function (PCF) modes of operations, respectively. In spite of its increasing popularity in real-world applications, the protocol suffers from the lack of any priority and access control policy to cope with various types of multimedia traffic, as well as user mobility. To expand support for applications with quality-of-service (QoS) requirements, the 802.11E task group was formed to enhance the original IEEE 802.11 medium access control (MAC) protocol. However, the problem of choosing the right set of MAC parameters and QoS mechanism to provide predictable QoS in IEEE 802.11 networks remains unsolved. In this paper, we propose a polling with nonpreemptive priority-based access control scheme for the IEEE 802.11 protocol. Under such a scheme, modifying the DCF access method in the contention period supports multiple levels of priorities such that user handoff calls can be supported in wireless LANs. The proposed transmit-permission policy and adaptive bandwidth allocation scheme derive sufficient conditions such that all the time-bounded traffic sources satisfy their time constraints to provide various QoS guarantees in the contention free period, while maintaining efficient bandwidth utilization at the same time. In addition, our proposed scheme is provably optimal for voice traffic in that it gives minimum average waiting time for voice packets. In addition to theoretical analysis, simulations are conducted to evaluate the performance of the proposed scheme. As it turns out, our design indeed provides a good performance in the IEEE 802.11 WLAN's environment, and can be easily incorporated into the hybrid coordination function (HCF) access scheme in the IEEE 802.11e standard.  相似文献   

8.
Using directional antennas can be beneficial for wireless ad hoc networks consisting of a collection of wireless hosts. The most important benefit includes a reduction of the radio interference. Thus, it can significantly increase the spatial reuse, thereby improving the network throughput. To best utilize directional antennas, a suitable Medium Access Control (MAC) protocol must be designed. Current MAC protocols, such as the IEEE 802.11 standard, do not benefit when using directional antennas, because these protocols have been designed for omnidirectional antennas. In this paper, we present modified MAC protocols suitable for 802.11 based ad hoc networks using directional antennas. Our comprehensive simulation results demonstrate the performance improvement obtained with the proposed protocols. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The application of directional antennas in wireless ad hoc networks offers numerous benefits, such as the extended communication range, the increased spatial reuse, the improved capacity and the suppressed interference. However, directional antennas can cause new location-dependent carrier sensing problems, such as new hidden terminal and deafness problems, which can severely degrade the network performance. Recently, a few schemes have been proposed to address these problems. However, most of these existing methods can only partially solve the hidden terminal and deafness problems. Some of them even bring significant performance overhead. In this paper, we propose a novel MAC protocol, in terms of the busy-tone based directional medium access control (BT-DMAC) protocol. In BT-DMAC, when the transmission is in progress, the sender and the receiver will turn on their omni-directional busy tones to protect the on-going transmission. Integrating with the directional network allocation vector (DNAV), the scheme can almost mitigate the hidden terminal problem and the deafness problem completely. We then propose an analytical model to investigate the throughput performance of BT-DMAC. The numerical results show that BT-DMAC outperforms other existing directional MAC schemes. We next evaluate the performance of BT-DMAC through extensive simulation experiments. The results show that our proposed BT-DMAC scheme has superior performance to other existing solutions, in terms of higher throughput.  相似文献   

10.
This paper presents an analytical approach to model the bi‐directional multi‐channel IEEE 802.11 MAC protocols (Bi‐MCMAC) for ad hoc networks. Extensive simulation work has been done for the performance evaluation of IEEE 802.11 MAC protocols. Since simulation has several limitations, this work is primarily based on the analytical approach. The objective of this paper is to show analytically the performance advantages of Bi‐MCMAC protocol over the classical IEEE 802.11 MAC protocol. The distributed coordination function (DCF) mode of medium access control (MAC) is considered in the modeling. Two different channel scheduling strategies, namely, random channel selection and fastest channel first selection strategy are also presented in the presence of multiple channels with different transmission rates. M/G/1 queue is used to model the protocols, and stochastic reward nets (SRNs) are employed as a modeling technique as it readily captures the synchronization between events in the DCF mode of access. The average system throughput, mean delay, and server utilization of each MAC protocol are evaluated using the SRN formalism. We also validate our analytical model by comparison with simulation results. The results obtained through the analytical modeling approach illustrate the performance advantages of Bi‐MCMAC protocols with the fastest channel first scheduling strategy over the classical IEEE 802.11 protocol for TCP traffic in wireless ad hoc networks. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we propose a MAC called “Neighbor Initiated Approach for avoiding Deaf and Hidden node problems in directional MAC protocol for Ad Hoc networks”, which takes advantage of the multi beam smart antennas. Through the antenna, a node can simultaneously transmit/receive a packet to/from all the directions around it. Thus the antenna switches itself in transmission and reception mode. In our scheme all transmission and reception will be directional. We discussed the hidden and deaf node problems with directional MAC and proposed the scheme to overcome those shortcomings. Our scheme has been inspired by the IEEE 802.11, which includes a new scheme to inform its neighbors who was deaf due to other communication. Moreover, the simultaneous transmission of the RTS/CTS through it’s all beams prevent the hidden node problem. In our scheme the idle nodes stay in reception mode for sensing the channel through its M non overlapping beams, as a substitute of omnidirectional antenna. It prevents the hidden node problem due to asymmetry in gain. We have simulated our scheme by OPNET 16.0, and compared our results with CDR MAC, DMAC and IEEE 802.11 protocols. Our results show that NIADH performs better than that of the existing protocols in majority of the scenarios.  相似文献   

12.
The deployment of directional antennas offers many advantages, such as transmission range extension, co‐channel interference reducing, the increasing of spatial reuse degree, throughput improving of networks, and transmission power saving. Hence, many ad hoc MAC protocols with directional antennas have been proposed. However, these protocols do not provide significant improvement of network performance due to the lack of supporting multiple transmissions and receptions simultaneously. With the adaptive beam‐forming system (Smart Antenna), a newly designed MAC protocol (MARS) that enables nodes with multiple transmissions and receptions is proposed. Simulation results show that our MARS do exploit the advantage of space division multiple access. In terms of total number of data forward and complete sessions in bottleneck nodes, MARS achieves three times better than Novel and nine times better than IEEE 802.11. In addition, the end‐to‐end delay keeps very short. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
IEEE 802.11 protocol supports adaptive rate mechanism, which selects the transmission rate according to the condition of the wireless channel, to enhance the system performance. Thus, research of multi‐rate IEEE 802.11 medium access control (MAC) performance has become one of the hot research topics. In this paper, we study the performance of multi‐rate IEEE 802.11 MAC over a Gaussian channel. An accurate analytical model is presented to compute the system saturation throughput. We validate our model in both single‐rate and multi‐rate networks through various simulations. The results show that our model is accurate and channel error has a significant impact on system performance. In addition, our numerical results show that the performance of single‐rate IEEE 802.11 DCF with basic access method is better than that with RTS/CTS mechanism in a high‐rate and high‐load network and vice versa. In a multi‐rate network, the performance of IEEE 802.11 DCF with RTS/CTS mechanism is better than that with basic access method in a congested and error‐prone wireless environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
The IEEE 802.11 MAC protocol is the standard for wireless LANs; it is widely used in testbeds and simulations for wireless multihop ad hoc networks. However, this protocol was not designed for multihop networks. Although it can support some ad hoc network architecture, it is not intended to support the wireless mobile ad hoc network, in which multihop connectivity is one of the most prominent features. In this article we focus on the following question: can the IEEE 802.11 MAC protocol function well in multihop networks? By presenting several serious problems encountered in an IEEE 802.11-based multihop network and revealing the in-depth cause of these problems, we conclude that the current version of this wireless LAN protocol does not function well in multihop ad hoc networks. We thus doubt whether the WaveLAN-based system is workable as a mobile ad hoc testbed  相似文献   

15.
Proliferation of mobile communication devices necessitates a reliable and efficient medium access control (MAC) protocol. In this paper, A MAC protocol, called extended sliding frame reservation Aloha (ESFRA), based on sliding frame R-Aloha (SFRA) is proposed for network access technique. ESFRA is particularly designed to solve the mobile hidden station (MHS) problem in a mobile ad hoc network (MANET) by including relative locations of transmitting stations in the packet frame information header. The MHS problem is unique in mobile networks and occurs if a mobile station enters in a collision free zone of any ongoing communication and disturbs this communication with its transmission. In addition to the MHS problem, ESFRA simultaneously solves hidden station, exposed station, and neighborhood capture problems typically observed in wireless networks. A Markov model of ESFRA is developed and provided here to estimate throughput, delay and collision probabilities of the proposed protocol. The Markov modeling is extended to the analysis of SFRA and IEEE 802.11 to compare these competing MAC protocols with ESFRA. The analysis shows that ESFRA decreases frame transmission delay, increases throughput, and reduces collision probabilities compared to IEEE 802.11 and SFRA. ESFRA improves the network throughput 28 percent compared to that of IEEE 802.11, and 33 percent compared to that of SFRA. The improved performance is obtained at the expense of the synchronization compared to IEEE 802.11, but there is virtually no extra cost compared to SFRA.  相似文献   

16.
基于干扰图的无线自组织网络MAC协议   总被引:1,自引:0,他引:1  
由于IEEE802.11MAC协议采用了简单的干扰模型,因此产生了隐藏终端和暴露终端这两个严重影响无线自组织网络性能的问题。文章提出了一种新的基于干扰图(Conflict Graph)的MAC协议——CG-MAC来提高无线自组织网络的吞吐量。通过仿真实验,该协议能够同时解决隐藏终端和暴露终端问题.很大程度地提高了网络性能。  相似文献   

17.
基于IEEE 802.11高速无线局域网的速率自适应MAC协议研究   总被引:3,自引:0,他引:3  
目前的IEEE 802.11标准在物理层提供了对多种发送速率的支持,然而在MAC层却没有规定速率自适应的方法。该文研究了高速IEEE 802.11 无线局域网中的速率自适应方案。首先,提出了EACK协议,EACK使用基本速率发送MAC头,并在ACK帧中携带信道信息,因而能够较快速地响应信道的变化,同时具有少的开销;其次,在EACK基础上,提出了一种恒定发送时间(CEACK)的策略,CEACK能够克服传统IEEE 802.11 DCF MAC协议的理论吞吐量上限,并且具有更好的时间公平性能,能够应用于高速的无线局域网。  相似文献   

18.
In wireless LANs (WLANs), the medium access control (MAC) protocol is the main element that determines the efficiency in sharing the limited communication bandwidth of the wireless channel. In this paper we focus on the efficiency of the IEEE 802.11 standard for WLANs. Specifically, we analytically derive the average size of the contention window that maximizes the throughput, hereafter theoretical throughput limit, and we show that: 1) depending on the network configuration, the standard can operate very far from the theoretical throughput limit; and 2) an appropriate tuning of the backoff algorithm can drive the IEEE 802.11 protocol close to the theoretical throughput limit. Hence we propose a distributed algorithm that enables each station to tune its backoff algorithm at run-time. The performances of the IEEE 802.11 protocol, enhanced with our algorithm, are extensively investigated by simulation. Specifically, we investigate the sensitiveness of our algorithm to some network configuration parameters (number of active stations, presence of hidden terminals). Our results indicate that the capacity of the enhanced protocol is very close to the theoretical upper bound in all the configurations analyzed  相似文献   

19.
Performance analysis of IEEE 802.11e contention-based channel access   总被引:5,自引:0,他引:5  
The new standard IEEE 802.11e is specified to support quality-of-service in wireless local area networks. A comprehensive study of the performance of enhanced distributed channel access (EDCA), the fundamental medium access control mechanism in IEEE 802.11e, is reported in this paper. We present our development of an analytical model, in which most new features of the EDCA such as virtual collision, different arbitration interframe space (AIFS), and different contention window are taken into account. Based on the model, we analyze the throughput performance of differentiated service traffic and propose a recursive method capable of calculating the mean access delay. Service differentiation functionality and effectiveness of the EDCA are investigated through extensive numerical and simulation results. The model and the analysis provide an in-depth understanding and insights into the protocol and the effects of different parameters on the performance.  相似文献   

20.
Medium access using the distributed coordination function of IEEE 802.11 is not efficient in wireless multihop networks if the devices are equipped with beamforming antennas. This paper proposes a distributed MAC protocol that goes completely away from the spatial reservation scheme of 802.11. It facilitates the use of beamforming antennas by following an announcement-objection scheme: a potential sender must “simulate” a transmission on a signaling channel before it can access the traffic channel. Based on this simulation, each receiving device estimates the expected interference and objects to the transmission if necessary. This paradigm overcomes the drawback of 802.11-based approaches that neighboring devices are silenced irrespective of whether or not they disturb signal reception. It benefits from a tight interaction of the MAC and physical layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号