首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Integrated manufacturing system (IMS) is a novel manufacturing environment which has been developed for the next generation of manufacturing and processing technologies. It consists of engineering design, process planning, manufacturing, quality management, and storage and retrieval functions. Improving the decision quality in those fields give rise to complex combinatorial optimization problems, unfortunately, most of them fall into the class of NP-hard problems. Find a satisfactory solution in an acceptable time play important roles. Evolutionary techniques (ET) have turned out to be potent methods to solve such kind of optimization problems. How to adapt evolutionary technique to the IMS is very challenging but frustrating. Many efforts have been made in order to give an efficient implementation of ET to optimize the specific problems in IMS.In this paper, we address four crucial issues in IMS, including design, planning, manufacturing, and distribution. Furthermore, some hot topics in these issues are selected to demonstrate the efficiency of ET’s application, such as layout design (LD) problem, flexible job-shop scheduling problem (fJSP), multistage process planning (MPP) problem, and advanced planning and scheduling (APS) problem. First, we formulate a generalized mathematic models for all those problems; several evolutionary algorithms which adapt to the problems have been proposed; some test instances based on the practical problems demonstrate the effectiveness and efficiency of our proposed approach.  相似文献   

2.
Effective task assignment is essential for achieving high performance in heterogeneous distributed computing systems. This paper proposes a new technique for minimizing the parallel application time cost of task assignment based on the honeybee mating optimization (HBMO) algorithm. The HBMO approach combines the power of simulated annealing, genetic algorithms, and an effective local search heuristic to find the best possible solution to the problem within an acceptable amount of computation time. The performance of the proposed HBMO algorithm is shown by comparing it with three existing task assignment techniques on a large number of randomly generated problem instances. Experimental results indicate that the proposed HBMO algorithm outperforms the competing algorithms.  相似文献   

3.
Process planning and scheduling are two key sub-functions in the manufacturing system. Traditionally, process planning and scheduling were regarded as the separate tasks to perform sequentially. Recently, a significant trend is to integrate process planning and scheduling more tightly to achieve greater performance and higher productivity of the manufacturing system. Because of the complementarity of process planning and scheduling, and the multiple objectives requirement from the real-world production, this research focuses on the multi-objective integrated process planning and scheduling (IPPS) problem. In this research, the Nash equilibrium in game theory based approach has been used to deal with the multiple objectives. And a hybrid algorithm has been developed to optimize the IPPS problem. Experimental studies have been used to test the performance of the proposed approach. The results show that the developed approach is a promising and very effective method on the research of the multi-objective IPPS problem.  相似文献   

4.
In traditional approaches, process planning and scheduling are carried out sequentially, where scheduling is done separately after the process plan has been generated. However, the functions of these two systems are usually complementary. The traditional approach has become an obstacle to improve the productivity and responsiveness of the manufacturing system. If the two systems can be integrated more tightly, greater performance and higher productivity of a manufacturing system can be achieved. Therefore, the research on the integrated process planning and scheduling (IPPS) problem is necessary. In this paper, a new active learning genetic algorithm based method has been developed to facilitate the integration and optimization of these two systems. Experimental studies have been used to test the approach, and the comparisons have been made between this approach and some previous approaches to indicate the adaptability and superiority of the proposed approach. The experimental results show that the proposed approach is a promising and very effective method on the research of the IPPS problem.  相似文献   

5.
This paper deals with the problem of task allocation (i.e., to which processor should each task of an application be assigned) in heterogeneous distributed computing systems with the goal of maximizing the system reliability. The problem of finding an optimal task allocation is known to be NP-hard in the strong sense. We propose a new swarm intelligence technique based on the honeybee mating optimization (HBMO) algorithm for this problem. The HBMO based approach combines the power of simulated annealing, genetic algorithms with a fast problem specific local search heuristic to find the best possible solution within a reasonable computation time. We study the performance of the algorithm over a wide range of parameters such as the number of tasks, the number of processors, the ratio of average communication time to average computation time, and task interaction density of applications. The effectiveness and efficiency of our algorithm are demonstrated by comparing it with recently proposed task allocation algorithms for maximizing system reliability available in the literature.  相似文献   

6.
This paper introduces a new hybrid algorithmic nature inspired approach based on Honey Bees Mating Optimization for successfully solving the Euclidean Traveling Salesman Problem. The proposed algorithm for the solution of the Traveling Salesman Problem, the Honey Bees Mating Optimization (HBMOTSP), combines a Honey Bees Mating Optimization (HBMO) algorithm, the Multiple Phase Neighborhood Search-Greedy Randomized Adaptive Search Procedure (MPNS-GRASP) algorithm and the Expanding Neighborhood Search Strategy. Besides these two procedures, the proposed algorithm has, also, two additional main innovative features compared to other Honey Bees Mating Optimization algorithms concerning the crossover operator and the workers. The main contribution of this paper is that it shows that the HBMO can be used in hybrid synthesis with other metaheuristics for the solution of the TSP with remarkable results both to quality and computational efficiency. The proposed algorithm was tested on a set of 74 benchmark instances from the TSPLIB and in all but eleven instances the best known solution has been found. For the rest instances the quality of the produced solution deviates less than 0.1% from the optimum.  相似文献   

7.
Mixed-model two-sided assembly lines are widely used in a range of industries for their abilities of increasing the flexibility to meet a high variety of customer demands. Balancing assembly lines is a vital design issue for industries. However, the mixed-model two-sided assembly line balancing (MTALB) problem is NP-hard and difficult to solve in a reasonable computational time. So it is necessary for researchers to find some efficient approaches to address this problem. Honey bee mating optimization (HBMO) algorithm is a population-based algorithm inspired by the mating process in the real colony and has been applied to solve many combinatorial optimization problems successfully. In this paper, a hybrid HBMO algorithm is presented to solve the MTALB problem with the objective of minimizing the number of mated-stations and total number of stations for a given cycle time. Compared with the conventional HBMO algorithm, the proposed algorithm employs the simulated annealing (SA) algorithm with three different neighborhood structures as workers to improve broods, which could achieve a good balance between intensification and diversification during the search. In addition, a new encoding and decoding scheme, including the adjustment of the final mated-station, is devised to fit the MTALB problem. The proposed algorithm is tested on several sets of instances and compared with Mixed Integer Programming (MIP) and SA. The superior results of these instances validate the effectiveness of the proposed algorithm.  相似文献   

8.
柔性作业车间调度问题是智能制造领域的一类典型调度问题,它是制造流程规划和管理中最关键的环节之一,有效的求解方法对提高生产效率具有重要的现实意义。本文基于经典灰狼算法进行改进,以优化最大完工时间为目标,提出一种改进的灰狼算法来求解柔性作业车间调度问题。算法首先采用基于权值的编码形式,实现对经典狼群算法中连续性编码的离散化;其次在迭代优化过程中加入随机游走策略,以增强局部搜索能力;然后在种群更新过程中加入尾部淘汰策略,在避免局部优化的同时增加种群多样性,合理扩大算法的广度搜索范围。在标准算例上的仿真实验结果表明,改进的灰狼算法在求解FJSP时比经典灰狼算法在寻优能力方面具有明显的优势,相比其它智能优化算法,本文所提算法在每种算例上均具有更好的优化性能。  相似文献   

9.
基于回溯法的全覆盖路径规划算法   总被引:1,自引:0,他引:1  
随着扫地机器人的快速发展,作为其核心技术的全覆盖路径规划技术也变得日益重要。目前已经提出的许多算法,如人工势场法、模板法、单元分解法等,都存在一些问题,如覆盖率低、重复率高、运行效率低等等。针对目前已有算法存在的问题,提出了一种基于回溯法的全覆盖路径规划算法。首先利用West-Move First算法实现局部区域覆盖,然后为了解决扫地机器人局部区域覆盖过程中存在遗漏区域未覆盖的问题,建立了完善的回溯机制,并采用改进的A~*算法规划出一条从死点到回溯点的光滑无障碍路径。通过与BA~*算法进行仿真对比分析,表明了该算法具有更高的运行效率和更低的重叠率。  相似文献   

10.
With the development of the globalization of economy and manufacturing industry, distributed manufacturing mode has become a hot topic in current production research. In the context of distributed manufacturing, one job has different process routes in different workshops because of heterogeneous manufacturing resources and manufacturing environments in each factory. Considering the heterogeneous process planning problems and shop scheduling problems simultaneously can take advantage of the characteristics of distributed factories to finish the processing task well. Thus, a novel network-based mixed-integer linear programming (MILP) model is established for distributed integrated process planning and scheduling problem (DIPPS). The paper designs a new encoding method based on the process network and its OR-nodes, and then proposes a discrete artificial bee colony algorithm (DABC) to solve the DIPPS problem. The proposed DABC can guarantee the feasibility of individuals via specially-designed mapping and switching operations, so that the process precedence constraints contained by the network graph can be satisfied in the entire procedure of the DABC algorithm. Finally, the proposed MILP model is verified and the proposed DABC is tested through some open benchmarks. By comparing with other powerful reported algorithms and obtaining new better solutions, the experiment results prove the effectiveness of the proposed model and DABC algorithm successfully.  相似文献   

11.
One objective of process planning optimization is to cut down the total cost for machining process, and the ant colony optimization (ACO) algorithm is used for the optimization in this paper. Firstly, the process planning problem, considering the selection of machining resources, operations sequence optimization and the manufacturing constraints, is mapped to a weighted graph and is converted to a constraint-based traveling salesman problem. The operation sets for each manufacturing features are mapped to city groups, the costs for machining processes (including machine cost and tool cost) are converted to the weights of the cities; the costs for preparing processes (including machine changing, tool changing and set-up changing) are converted to the ‘distance’ between cities. Then, the mathematical model for process planning problem is constructed by considering the machining constraints and goal of optimization. The ACO algorithm has been employed to solve the proposed mathematical model. In order to ensure the feasibility of the process plans, the Constraint Matrix and State Matrix are used in this algorithm to show the state of the operations and the searching range of the candidate operations. Two prismatic parts are used to compare the ACO algorithm with tabu search, simulated annealing and genetic algorithm. The computing results show that the ACO algorithm performs well in process planning optimization than other three algorithms.  相似文献   

12.
Automatic motion planning in complex environment is significant in manufacturing. This paper presents an off-line collision-free motion planning algorithm by considering the task redundancy existing in manufacturing. The paper takes a typical welding technique as an example, which mainly aims at solving the complex continuous welding motion planning problems. In the proposed algorithm, the angular redundancy existing in the welding process is fully considered for planning and optimizing the welding torch path by minimizing the torch angular cost. Besides, some strategies have been introduced to improve the efficiency of the proposed algorithm, such as the heuristic region sampling strategy based on Gaussian sampling, which is adopted to guide planning. Midpoint collision checking strategy is employed to improve the efficiency of the collision checking. The proposed algorithm is very effective in solving the complex welding motion planning problems, such as in the welding environment where the weld seam is situated in the narrow passage or the dense obstacles. The experiments are carried out to verify that our proposed algorithm is feasible in the relevant scenarios. All the experimental results show that not only the proposed algorithm could find a feasible collision-free path in the different complex environments if any path exists, but also the torch angle could be optimized with the increase of iteration.  相似文献   

13.
Job shop scheduling problem (JSP) which is widespread in the real-world production system is one of the most general and important problems in various scheduling problems. Nowadays, the effective method for JSP is a hot topic in research area of manufacturing system. JSP is a typical NP-hard combinatorial optimization problem and has a broad engineering application background. Due to the large and complicated solution space and process constraints, JSP is very difficult to find an optimal solution within a reasonable time even for small instances. In this paper, a hybrid particle swarm optimization algorithm (PSO) based on variable neighborhood search (VNS) has been proposed to solve this problem. In order to overcome the blind selection of neighborhood structures during the hybrid algorithm design, a new neighborhood structure evaluation method based on logistic model has been developed to guide the neighborhood structures selection. This method is utilized to evaluate the performance of different neighborhood structures. Then the neighborhood structures which have good performance are selected as the main neighborhood structures in VNS. Finally, a set of benchmark instances have been conducted to evaluate the performance of proposed hybrid algorithm and the comparisons among some other state-of-art reported algorithms are also presented. The experimental results show that the proposed hybrid algorithm has achieved good improvement on the optimization of JSP, which also verifies the effectiveness and efficiency of the proposed neighborhood structure evaluation method.  相似文献   

14.
Clustering is an important and popular technique in data mining. It partitions a set of objects in such a manner that objects in the same clusters are more similar to each another than objects in the different cluster according to certain predefined criteria. K-means is simple yet an efficient method used in data clustering. However, K-means has a tendency to converge to local optima and depends on initial value of cluster centers. In the past, many heuristic algorithms have been introduced to overcome this local optima problem. Nevertheless, these algorithms too suffer several short-comings. In this paper, we present an efficient hybrid evolutionary data clustering algorithm referred to as K-MCI, whereby, we combine K-means with modified cohort intelligence. Our proposed algorithm is tested on several standard data sets from UCI Machine Learning Repository and its performance is compared with other well-known algorithms such as K-means, K-means++, cohort intelligence (CI), modified cohort intelligence (MCI), genetic algorithm (GA), simulated annealing (SA), tabu search (TS), ant colony optimization (ACO), honey bee mating optimization (HBMO) and particle swarm optimization (PSO). The simulation results are very promising in the terms of quality of solution and convergence speed of algorithm.  相似文献   

15.
Integration of process planning and scheduling (IPPS) is an important research issue to achieve manufacturing planning optimisation. In both process planning and scheduling, vast search spaces and complex technical constraints are significant barriers to the effectiveness of the processes. In this paper, the IPPS problem has been developed as a combinatorial optimisation model, and a modern evolutionary algorithm, i.e., the particle swarm optimisation (PSO) algorithm, has been modified and applied to solve it effectively. Initial solutions are formed and encoded into particles of the PSO algorithm. The particles “fly” intelligently in the search space to achieve the best sequence according to the optimisation strategies of the PSO algorithm. Meanwhile, to explore the search space comprehensively and to avoid being trapped into local optima, several new operators have been developed to improve the particles’ movements to form a modified PSO algorithm. Case studies have been conducted to verify the performance and efficiency of the modified PSO algorithm. A comparison has been made between the result of the modified PSO algorithm and the previous results generated by the genetic algorithm (GA) and the simulated annealing (SA) algorithm, respectively, and the different characteristics of the three algorithms are indicated. Case studies show that the developed PSO can generate satisfactory results in both applications.  相似文献   

16.
基于遗传算法的最优布局问题求解   总被引:9,自引:0,他引:9  
印鉴  李明 《计算机研究与发展》2002,39(10):1269-1273
二维不规则形状物体的自动最优布局问题是一个在许多生产实践如VLSI制造、造船、金属切割和纺织等中有关键应用的重要问题,也是一个计算机科学和运筹学中的基本问题,使使用传统的方法很到满意解答,针对该问题,提出了一个基于遗传算法的求解方法,并将它应用到服装计算机辅助设计中去,给出了此问题的形式化描述,并将问题归约为一种关于多边形运动规划的筹价形式,根据问题的特性设计了算法的3个重要算子,在解的解码和评价过程中则充分利用了已有的关于多边形运动规划的最优算法,实验结果表明所提出的方法能较好地解决最优布局问题。  相似文献   

17.
A decision support system for production scheduling in an ion plating cell   总被引:2,自引:0,他引:2  
Production scheduling is one of the major issues in production planning and control of individual production units which lies on the heart of the performance of manufacturing organizations. Traditionally, production planning decision, especially scheduling, was resolved through intuition, experience, and judgment. Machine loading is one of the process planning and scheduling problems that involves a set of part types and a set of tools needed for processing the parts on a set of machines. It provides solution on assigning parts and allocating tools to optimize some predefined measures of productivity. In this study, Ion Plating industry requires similar approaches on allocating customer's order, i.e. grouping production jobs into batches and arrangement of machine loading sequencing for (i) producing products with better quality products; and (ii) enabling to meet due date to satisfy customers. The aim of this research is to develop a Machine Loading Sequencing Genetic Algorithm (MLSGA) model to improve the production efficiency by integrating a bin packing genetic algorithm model in an Ion Plating Cell (IPC), such that the entire system performance can be improved significantly. The proposed production scheduling system will take into account the quality of product and service, inventory holding cost, and machine utilization in Ion Plating. Genetic Algorithm is being chosen since it is one of the best heuristics algorithms on solving optimization problems. In the case studies, industrial data of a precious metal finishing company has been used to simulate the proposed models, and the computational results have been compared with the industrial data. The results of developed models demonstrated that less resource could be required by applying the proposed models in solving production scheduling problem in the IPC.  相似文献   

18.
吴祥  董辉  俞立  张文安 《控制与决策》2022,37(6):1531-1540
服装生产工业中,服装裁剪分床计划是工艺流程的第1个步骤,对生产管理和成本控制起决定性作用,而大批量不规则多色服装裁剪分床是关键难题,其本质是一个NP难的非线性优化问题.针对该问题,提出一种基于NSGAII的复合优化算法,首次将多目标进化算法应用于裁剪分床计划问题中.首先,建立多色服装裁剪分床多目标进化优化模型,以生产过...  相似文献   

19.
研究了复杂未知环境下移动机器人的路径规划问题,旨在解决当机器人具有相当大的可视半径时,传统的滚动规划算法在解决路径规划问题时效率不高的问题。提出了一种局部规划中采用改进的A*算法的滚动规划算法。该算法引入一种二叉堆数据结构来存储局部规划待考察的节点,通过减少局部寻优中比较的次数来提高搜索的速度。仿真结果表明,该算法在解决这类路径规划问题时,能显著提高路径规划的效率,对其他的路径规划算法也有重要的借鉴意义。  相似文献   

20.
Robust and efficient process planning techniques play an important role in CAD/CAM integration. These techniques need to be developed for each type of manufacturing processes owing to the unique characteristics of each of these processes. In this paper, we describe feature extraction techniques that can be applied to layered manufacturing (LM). The aim is to improve the LM process efficiency by considering the specific feature information of the model, which is normally neglected by previous researches. A feature-based LM system has been developed using these techniques. Based on the proposed orthogonal LM system, features extracted from the geometric analysis are defined in the LM domain, and the algorithm for process planning and volume decomposition based on the specific LM features is proposed and implemented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号