首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a kinetic model is constructed to simulate sulfur deactivation of the NOx storage performance of BaO/Al2O3 and Pt/BaO/Al2O3 catalysts. The model is based on a previous model for NOx storage under sulfur-free conditions. In the present model the storage of NOx is allowed on two storage sites, one for complete NOx uptake and one for a slower NOx sorption. The adsorption of SOx is allowed on both of these NOx storage sites and on one additional site which represent bulk storage. The present model is built-up of six sub-models: (i) NOx storage under sulfur-free conditions; (ii) SO2 storage on NOx storage sites; (iii) SO2 oxidation; (iv) SO3 storage on bulk sites; (v) SO2 interaction with platinum in the presence of H2; (vi) oxidation of accumulated sulfur compounds on platinum by NO2. Data from flow reactor experiments are used in the implementation of the model. The model is tested for simulation of experiments for NOx storage before exposure to sulfur and after pre-treatments either with SO2 + O2 or SO2 + H2. The simulations show that the model is able to describe the main features observed experimentally.  相似文献   

2.
Free energy minimization calculations are used to determine the thermodynamic equilibrium concentrations of NOx and other species in stoichiometric and lean gas mixtures over a range of temperatures and compositions. Under lean (excess N2 and O2) conditions, the NO decomposition (NO↔(1/2)N2+(1/2)O2) and NO oxidation (NO+(1/2)O2↔NO2) equilibria impose lower bounds on the NOx concentrations achievable by thermodynamic equilibration or NOx decomposition, and these equilibrium NOx concentrations can be practically significant. Assuming a perfect isothermal catalyst acting on a representative diesel exhaust stream collected over the federal test procedure (FTP) cycle, equilibrium NOx levels exceed upcoming California Low Emission Vehicle II (LEV-II) and Tier II NOx emissions standards for automobiles and trucks at temperatures above approximately 800 K. Consideration of a perfect adiabatic catalyst acting on the same diesel exhaust shows that equilibrium NOx values can fall below NOx emissions standards at lower temperatures, but to achieve these low concentrations would require the catalyst to attain 100% approach to equilibrium at very low temperatures. It is concluded that NOx removal based on a thermodynamic equilibrating catalyst under lean exhaust conditions is not practically viable for automotive application, and that to achieve upcoming NOx standards will require selective NOx catalysts that vigorously promote NOx reactions with reductant and do not promote NO decomposition or oxidation. Finally, the ability of a selective NOx catalyst system to reduce NOx concentrations to or below thermodynamic equilibrium values is proposed as a useful measure for selective catalytic reduction (SCR) activity.  相似文献   

3.
Several hexaaluminate-related materials were prepared via hydrolysis of alkoxide and powder mixing method for high temperature combustion of CH4 and C3H8, in order to investigate the effect of the concentration of the fuels, O2 and H2O on NOx emission and combustion characteristics. Among the hexaaluminate catalysts, Sr0.8La0.2MnAl11O19− prepared by the alkoxide method exhibited the highest activity for methane combustion and low NOx emission capability. NOx emission at 1500 °C was increased linearly with O2 concentration, whereas water vapor addition decreased NOx emission in CH4 combustion over the Sr0.8La0.2MnAl11O19− catalyst. In the catalytic combustion of C3H8 over the Sr0.8La0.2MnAl11O19− catalyst, the amount of NOx emitted was raised in the temperature range between 1000 and 1500 °C when the C3H8 concentration increased from 1 to 2 vol.%. It was found that NOx emission in this temperature range was reduced effectively by adding water vapor.  相似文献   

4.
A model of NOx selective reduction by hydrocarbon (HC) was developed, which takes into account the adsorption and desorption of HC. The model was applied for predicting the performance of a De–NOx catalytic reactor, working under transient conditions such as a legislative driving cycle. Diesel fuel was used as a supplemental reductant.

The behavior of HC and NOx reactions and HC adsorption and desorption has been simulated successfully by our numerical approach under the transient conditions of the simulated Japanese 10–15 driving cycle. Our model is expected to optimize the design of selective diesel NOx reduction systems using a diesel fuel as a supplemental reductant.  相似文献   


5.
Increasingly stringent ambient air quality standards coupled with the need to improve fuel economy has drawn significant attention to the search for emission control systems for lean burn engine vehicles. Much of the focus has been on zeolite-based catalysts for the conversion of NOx to N2 for automotive exhaust emission control. Under certain conditions, these catalysts are highly active catalysts for the reduction of NOx using hydrocarbons as the reductant. However, many of these catalysts suffer from a variety of deactivation processes such as irreversible poisoning by SOx or hydrothermal dealumination.

In addition to these deactivation processes, a recent focus of our research has been on the influence of water vapor on the activity of zeolite-based catalysts at low operating temperatures. We observe a hysteresis in catalytic activity of lean NOx reduction (NO feed concentrations <100 ppm) upon increasing and decreasing temperature ramps at the low end of the operating window, that being from 100 to 300 °C using hydrocarbons as reductants. We describe these reversible influences of water vapor and the implications for this hysteresis in catalytic activity for the application of zeolite-based catalysts in lean NOx catalysis, and compare these results to the instance of using ammonia as reductant.  相似文献   


6.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

7.
Y. Hu  S. Naito  N. Kobayashi  M. Hasatani 《Fuel》2000,79(15):1925-1932
The emissions of CO2, NOx and SO2 from the combustion of a high-volatile coal with N2- and CO2-based, high O2 concentration (20, 50, 80, 100%) inlet gases were investigated in an electrically heated up-flow-tube furnace at elevated gas temperatures (1123–1573 K). The fuel equivalence ratio, φ, was varied in the range of 0.4–1.6. Results showed that CO2 concentrations in flue gas were higher than 95% for the processes with O2 and CO2-based inlet gases. NOx emissions increased with φ under fuel-lean conditions, then declined dramatically after φ=0.8, and the peak values increased from about 1000 ppm for the air combustion process and 500 ppm for the O2(20%)+CO2(80%) inlet gas process to about 4500 ppm for the oxygen combustion process. When φ>1.4 the emissions decreased to the same level for different O2 concentration inlet gas processes. On the other hand, NOx emission indexes decreased monotonically with φ under both fuel-lean and fuel-rich combustion. SO2 emissions increased with φ under fuel-lean conditions, then declined slightly after φ>1.2. Temperature has a large effect on the NOx emission. Peak values of the NOx emission increased by 50–70% for the N2-based inlet gas processes and by 30–50% for the CO2-based inlet gas process from 1123 to 1573 K. However, there was only a small effect of temperature on the SO2 emission.  相似文献   

8.
Transient behaviour of catalytic monolith converter with NOx storage is studied under conditions typical for automobiles with lean-burn engines (i.e., diesel and advanced gasoline ones). Periodical alternation of inlet concentrations is applied—NOx are adsorbed on the catalyst surface during a long reductant-lean phase (2–3 min) and then reduced to N2 within a short reductant-rich phase (2–6 s). Samples of industrial NOx storage and reduction catalyst of NM/Ba/CeO2/γ-Al2O3 type (NM = noble metal), washcoated on 400 cpsi cordierite substrate, are used in the study. Effects of the rich-phase length and composition on the overall NOx conversions are examined experimentally. Reduction of NOx by CO, H2 and unburned hydrocarbons (represented by C3H6) in the presence of CO2 and H2O is considered.

Effective, spatially 1D, heterogeneous mathematical model of catalytic monolith with NOx and oxygen storage capacity is described. The minimum set of experiments needed for the evaluation of relevant reaction kinetic parameters is discussed: (i) CO, H2 and HC oxidation light-off under both lean and rich conditions, including inhibition effects, (ii) NO/NO2 transformation, (iii) NOx storage, including temperature dependence of effective NOx storage capacity, (iv) water gas shift and steam reforming under rich conditions, i.e., in situ production of hydrogen, (v) oxygen storage and reduction, including temperature dependence of effective oxygen storage capacity, and (vi) NOx desorption and reduction under rich conditions. The experimental data are compared with the simulation results.  相似文献   


9.
We have investigated the regeneration of a nitrated or sulphated model Pt/Ba-based NOx trap catalyst using different reductants. H2 was found to be more effective at regenerating the NOx storage activity especially at lower temperature, but more importantly over the entire temperature window after catalyst ageing. When the model NOx storage catalyst is sulphated in SO2 under lean conditions at 650 °C almost complete deactivation can be seen. Complete regeneration was not achieved, even under rich conditions at 800 °C in 10% H2/He. Barium sulphate formed after the high temperature ageing was partly converted to barium sulphide on reduction. However, if the H2 reduced sample was exposed to a rich condition in a gas mixture containing CO2 at 650 °C, the storage activity can be recovered. Under these rich conditions the S2− species becomes less stable than the CO32−, which is active for storing NOx. Samples which were lean aged in air containing 60 ppm SO2 at <600 °C, after regeneration at λ=0.95 at 650 °C, have a similar activity window to a fresh catalyst. It is, therefore, important that CO2 is present during the rich regenerations of the sulphated model samples (as of course it would be under real conditions), as suppression of carbonate formation can lead to sulphide formation which is inactive for NOx storage.  相似文献   

10.
SO2 and NO emitted from coal-fired power plants have caused serious air pollution in China. In this study, a test system for NO oxidation using O3 is established. The basic characteristics of NO oxidation and products forms are studied. A separate test system for the combined removal of SO2 and NOx is also established, and the absorption characteristics of NOx are studied. The characteristics of NO oxidation and NOx absorption were verified in a 35 t·h-1 industrial boiler wet combined desulfurization and denitrification project. The operating economy of ozone oxidation wet denitrification technology is analyzed. The results show that O3 has a high rate and strong selectivity for NO oxidation. When O3 is insufficient, the primary oxidation product is NO2. When O3 is present in excess, NO2 continues to get oxidized to N2O5 or NO3. The removal efficiency of NO2 in alkaline absorption system is low (only about 15%). NOx removal efficiency can be improved by oxidizing NOx to N2O5 or NO3 by increasing ozone ratio. When the molar ratio of O3/NO is 1.77, the NOx removal efficiency reaches 90.3%, while the operating cost of removing NOx per kilogram is 6.06 USD (NO2).  相似文献   

11.
The release and reduction of NOx in a NOx storage-reduction (NSR) catalyst were studied with a transient reaction analysis in the millisecond range, which was made possible by the combination of pulsed injection of gases and time resolved time-of-flight mass spectrometry. After an O2 pulse and a subsequent NO pulse were injected into a pellet of the Pt/Ba/Al2O3 catalyst, the time profiles of several gas products, NO, N2, NH3 and H2O, were obtained as a result of the release and reduction of NOx caused by H2 injection. Comparing the time profiles in another analysis, which were obtained using a model catalyst consisting of a flat 5 nmPt/Ba(NO3)2/cordierite plate, the release and reduction of NOx on Pt/Ba/Al2O3 catalyst that stored NOx took the following two steps; in the first step NO molecules were released from Ba and in the second step the released NO was reduced into N2 by H2 pulse injection. When this H2 pulse was injected in a large amount, NO was reduced to NH3 instead of N2.

A only small amount of H2O was detected because of the strong affinity for alumina support. We can analyze the NOx regeneration process to separate two steps of the NOx release and reduction by a detailed analysis of the time profiles using a two-step reaction model. From the result of the analysis, it is found that the rate constant for NOx release increased as temperature increase.  相似文献   


12.
Performance of NOx traps after high-temperature treatments in different redox environments was studied. Two types of treatments were considered: aging and pretreatment. Lean and rich agings were examined for a model NOx trap, Pt–Ba/Al2O3. These were done at 950 °C for 3 h, in air and in 1% H2/N2, respectively. Lean aging had a severe impact on NOx trap performance, including HC and CO oxidation, and NH3 and N2O formation. Rich aging had minimal impact on performance, compared to fresh/degreened performance. Deactivation from lean aging was essentially irreversible due to Pt sintering, but Pt remained dispersed with the rich aging. Pretreatments were examined for a commercially feasible fully formulated NOx trap and two model NOx traps, Pt–Ba/Al2O3 and Pt–Ba–Ce/Al2O3. Pretreatments were done at 600 °C for 10 min, and used feed gas that simulated diesel exhaust under several conditions. Lean pretreatment severely suppressed NOx, HC, CO, NH3 and N2O activities for the ceria-containing NOx traps, but had no impact on Pt–Ba/Al2O3. Subsequently, a relatively mild rich pretreatment reversed this deactivation, which appears to be due to a form of Pt–ceria interaction, an effect that is well known from early work on three-way catalysts. Practical applications of results of this work are discussed with respect to NOx traps for light-duty diesel vehicles.  相似文献   

13.
A catalytic deSoot–deNOx system, comprising Pt and Ce fuel additives, a Pt-impregnated wall-flow monolith soot filter and a vanadia-type monolithic NH3-SCR catalyst, was tested with a two-cylinder DI diesel engine. The soot removal efficiency of the filter was 98–99 mass% with a balance temperature (stationary pressure drop) of 315 °C at an engine load of 55%. The NOx conversion ranged from 40 to 73%, at a NH3/NOx molar ratio of 0.9. Both systems were measured at a GHSV of 52 000 l/(l h). The maximum NOx conversion was obtained at 400 °C. The reason for the moderate deNOx performance is discussed. No deactivation was observed after 380 h time on stream. The NOx emission at high engine loads is around 15% lower than that of engines running without fuel additives.  相似文献   

14.
NOx reduction with NO2 as the NOx gas in the absence of plasma was compared to plasma treated lean NOx exhaust where NO is converted to NO2 in the plasma. Product nitrogen was measured to prove true chemical reduction of NOx to N2. With plasma treatment, NO as the NOx gas, and a NaY catalyst, the maximum conversion to nitrogen was 50% between 180 and 230 °C. The activity decreased at higher and lower temperatures. At 130 °C a complete nitrogen balance could be obtained, however between 164 and 227 °C less than 20% of the NOx is converted to a nitrogen-containing compound or compounds not readily detected by gas chromatograph (GC) or Fourier transform infrared spectrometer (FT-IR) analysis. With plasma treatment, NO2 as the NOx gas, and a NaY catalyst, a complete nitrogen balance is obtained with a maximum conversion to nitrogen of 55% at 225 °C.

For γ-alumina, with plasma treatment and NO2 as the NOx gas, 59% of the NOx is converted to nitrogen at 340 °C. A complete nitrogen balance was obtained at these conditions. As high as 80% NOx removal over γ-alumina was measured by a chemiluminescent NOx meter with plasma treatment and NO as the NOx gas.

When NO is replaced with NO2 and the simulated exhaust gases are not plasma treated, the maximum NOx reduction activity of NaY and γ-alumina decreases to 26 and 10%, respectively. This is a large reduction in activity compared to similar conditions where the simulated exhaust was plasma treated. Therefore, in addition to NO2, other plasma-generated species are required to maximize NOx reduction.  相似文献   


15.
The lean selective catalytic reduction of NOx by methane over protonic palladium loaded ZSM-5, FER and MOR, as well as, on bimetallic Pd–Pt-HMOR was examined. Special emphasis was paid on the combined effects of water and SO2 in the feed stream. Under dry conditions and in the absence of SO2, the degree of NOx conversion at 450°C decreases as follows: Pd-HZSM-5>Pd-HMOR>Pd-HFER. Sulfur dioxide alone has no apparent effect on the activity for NOx reduction, but the coexistence of water and SO2 inhibits both NOx and methane conversions. The extent of inhibition by water and SO2 on NOx reduction is Pd-HFER>Pd-HZSM-5>Pd-HMOR. Acid mordenite doped with low levels of Pt and Pd leads to an active catalyst that is more tolerant to the presence of either water or SO2 than the corresponding monometallic Pt- and Pd-HMOR. Nevertheless, NOx reduction is also inhibited at temperatures below 450°C when SO2 and water are both present. TPD experiments of water over calcined samples of protonic Pd supported pentasil zeolites, Pd/γ-Al2O3 and Pt–Pd-HMOR with and without pretreatment in SO2+O2 indicate that sulfation of the surface increases water chemisorption by the support. Therefore, the observed decrease of NOx reduction on Pd-loaded zeolite catalysts when SO2 and H2O coexist in the feed stream may be due to enhanced water inhibition and presumably active site poisoning.  相似文献   

16.
17.
K. Vaezzadeh  C. Petit  V. Pitchon   《Catalysis Today》2002,73(3-4):297-305
NOx sorption and reduction capacities of 12-tungstophosphoric acid hexahydrate (H3PW12O40·6H2O, HPW) were measured under representative alternating conditions of lean and rich exhaust-type gas mixture. Under lean conditions, the sorption of NOx is large and is equivalent to 37 mg of NOx/gHPW. Although a part of these NOx remains unreduced, HPW is able to reduce some of the NOx to produce N2 by a reaction between the sorbed NO2 and hydrocarbon (HC), but this process is slow. The addition of 1% Pt affects strongly the chemical behaviour occurring during the course of a rich operation. The NO desorption observed at the beginning of the rich phase is strongly accelerated. The direct correlation between NO2 consumption and CO2 production shows that the principal pathway is the reaction CO+NO2→CO2+NO. In a mixture of reducing gas (CO, HC, H2), the competition is strongly in favour of CO though in its absence the reaction observed was the hydrogenation of propene to propane.  相似文献   

18.
The role of plasma processing on NOx reduction over γ-alumina and a basic zeolite, NaY was examined. During the plasma treatment NO is oxidized to NO2 and propylene is partially oxidized to CO, CO2, acetaldehyde, and formaldehyde. With plasma treatment, NO as the NOx gas, and a NaY catalyst, the maximum NOx conversion was 70% between 180 and 230 °C. The activity decreased at higher and lower temperatures.

As high as 80% NOx removal over gamma alumina was measured by a chemiluminescent NOx meter with plasma treatment and NO as the NOx gas.

For both catalysts a simultaneous decrease in NOx and aldehydes concentrations was observed, which suggests that aldehyde may be important components for NOx reduction in plasma-treated exhaust.  相似文献   


19.
NOx emission during the regeneration of coked fluid catalytic cracking (FCC) catalysts is an environmental problem. In order to follow the route to NOx formation and try to find ways to suppress it, a coked industrial FCC catalyst has been prepared using model N-containing compounds, e.g., pyridine, pyrrole, aniline and hexadecane–pyridine mixture. Nitrogen present in the FCC feed is incorporated as polyaromatic compounds in the coke deposited on the catalyst during cracking. Its functionality has been characterized using XPS. Nitrogen specie of different types, namely, pyridine, pyrrolic or quaternary-nitrogen (Q-N) have been discriminated. Decomposition of the coke during the catalyst regeneration (temperature programmed oxidation (TPO) and isothermal oxidation) has been monitored by GC and MS measurements of the gaseous products formed. The pyrrolic- and pyridinic-type N specie, present more in the outer coke layers, are oxidized under conditions when still large amount of C or CO is available from coke to reduced NOx formed to N2. “Q-N” type species are present in the inner layer, strongly adsorbed on the acid sites on the catalyst. They are combusted last during regeneration. As most of the coke is already combusted at this point, lack of reductants (C, CO, etc.) results in the presence of NOx in the tail gas.  相似文献   

20.
Recent advances in automobile exhaust catalysts   总被引:14,自引:0,他引:14  
Catalysts, which were recently developed by Toyota for the control of automobile exhaust, are reviewed. (1) For use in low emission vehicles, a CeO2-ZrO2 solid solution (CZ) with both high oxygen storage capacity and high heat resistance was developed as a support for a high performance three-way catalyst (TWC). (2) A novel three-way catalyst named the NOx storage-reduction catalyst (NSR) was developed for automotive lean-burn engines. The NSR catalyst can store NOx in an oxidizing atmosphere and then reduce stored NOx at stoichiometric or reducing conditions. Also, it has high tolerance to sulfur poisoning which is the most stringent problem for the NSR catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号