首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
移相全桥零电压开关变换器是中大功率直直变换场合的理想拓扑之一,但其次级整流二极管反向恢复时,产生严重的寄生振荡,二极管上存在很高的尖峰电压。而文献1中的变换器通过增加一个谐振电感和两个二极管,不仅可以实现软开关,还可以消除次级整流二极管反向恢复引起的电压振荡。基于此变换器的工作原理,文中设计了一台500W移相控制零电压软开关电源,给出了主电路的设计过程和实验波形。  相似文献   

2.
This paper presents a high-performance DC-DC switching mode power supply designed to deliver a regulated 0-50 V/0-10 A output. The proposed power supply is based on a modified version of the zero-voltage switching (ZVS) full-bridge (FB) phase-shift DC-DC converter, which incorporates commutation auxiliary inductors to provide ZVS for the entire load range as well as a commutation aid circuit to clamp the output diode voltage. The control strategy is based on two control loops operating in cascade mode. The inner loop maintains a regulated output current, whereas the external voltage loop regulates the output voltage, independently of load and input-voltage changes. In order to obtain a high-reliability converter, the control circuit has been implemented using just two integrated circuits (ICs). The phase-shift regulator UC3875 IC generates the gate drive signal to the MOSFET's. The control loop regulators are implemented using the TL074 IC. A theoretical analysis was conducted, and experimental results were obtained for a 0-50 V/0-10 A power supply operating at 100 kHz  相似文献   

3.
简述了市场上现有移相控制器的简单情况,分析了全桥移相的工作原理,进而介绍了采用常规PWM控制芯片及全桥驱动器HIP4081A实现50w/500kHz全桥移相ZVS隔离DC/DC变换器,通过有效的利用变压器漏感、MOSFET的输出电感以及MOSFET的体二极管实现ZVS,大幅度降低了开关损耗、热损耗、EMI和RFI。通过深入细致的实验观察,验证了理论设计的正确性、合理性,并给出了相关的实验波形和实验结果分析。  相似文献   

4.
Multi-loop control for quasi-resonant converters   总被引:2,自引:0,他引:2  
A multiloop control scheme for quasi-resonant converters (QRCs) is described. Like current-mode control for pulse width modulation (PWM) converters, this control offers excellent transient response and replaces the voltage-controlled oscillator (VCO) with a simple comparator. In this method, referred to as current-sense frequency modulation (CSFM), a signal proportional to the output-inductor current is compared with an error voltage signal to modulate the switching frequency. The control can be applied to either zero-voltage-switched (ZVS) or zero-current-switched (ZCS) QRCs. Computer simulation is method applied to a ZCS buck QRC. A circuit implementation is presented that allows multiloop control to be used on circuits switching up to 10 MHz. This circuit requires few components and produces clean control waveforms. Experimental results are presented for zero-current flyback and zero-voltage buck QRCs, operating at up to 7 MHz. Good small-signal characteristics have been obtained  相似文献   

5.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-current switching PWM (ZCS-PWM) auxiliary circuit is configured in the presented ZCS-PWM rectifier to perform ZCS in the active switches and zero-voltage switching (ZVS) in the passive switches. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZCS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved because of the following reasons: 1) the circulating current for the soft switching flows only through the auxiliary circuit; 2) a minimum number of switching devices are involved in the circulating current path; and 3) the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Seven transition states for describing the behavior of the ZCS-PWM rectifier in one switching period are described. The PWM-switch model is used to predict the system performance. A prototype rated at 1 kW, operating at 60 kHz, with an input alternating current voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/, has been implemented in laboratory. An efficiency of 98.3% and a power factor over 0.99 have been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

6.
A zero-voltage and zero-current switching three-level DC/DC converter   总被引:6,自引:0,他引:6  
This paper presents a novel zero-voltage and zero-current switching (ZVZCS) three-level DC/DC converter. This converter overcomes the drawbacks presented by the conventional zero-voltage switching (ZVS) three-level converter, such as high circulating energy, severe parasitic ringing on the rectifier diodes, and limited ZVS load range for the inner switches. The converter presented in this paper uses a phase-shift control with a flying capacitor in the primary side to achieve ZVS for the outer switches. Additionally, the converter uses an auxiliary circuit to reset the primary current during the freewheeling stage to achieve zero-current switching (ZCS) for the inner switches. The principle of operation and the DC characteristics of the new converter are analyzed and verified on a 6 kW, 100 kHz experimental prototype.  相似文献   

7.
This paper develops a power loss optimization method in a current fed zero-voltage switching (ZVS) two-inductor boost converter, which is suitable for the module integrated converter applications in grid interactive photovoltaic systems. The paper conducts the numerical analysis of the variable power loss components and establishes a set of the circuit parameters for an optimized operating point with a minimized average power loss. The ZVS two-inductor boost cell is fed from a sinusoidally modulated two-phase synchronous buck converter with an interphase transformer and produces a rectified sinusoidal voltage, which can be applied to an unfolding stage to generate the grid compatible voltage. The boost cell is also equipped with a resonant transition gate drive circuit to reduce the power loss in the drive circuit under high frequency operations. The experimental results for a prototype 1-MHz 100-W ZVS two-inductor boost converter are presented at the end of the paper.  相似文献   

8.
本文介绍了一台大功率高频软开关电化学电源(1 5V/2000A)的设计方案,该电源的主电路采用串联型ZVS移相全桥电路拓扑。文中给出了谐振参数设计的详细过程,并且在实验中对谐振参数进行了进一步优化,有效拓宽了滞后桥臂软开关的实现范围,大大降低了开关损耗,提高了电源工作效率。样机运行结果证明了所提出设计方案的可行性。  相似文献   

9.
The two-inductor boost converter has been previously presented in a zero-voltage switching (ZVS) form where the transformer leakage inductance and the MOSFET output capacitance can be utilized as part of the resonant elements. In many applications, such as maximum power point tracking (MPPT) in grid interactive photovoltaic systems, the resonant two-inductor boost converter is required to operate with variable input output voltage ratios. This paper studies the variable frequency operation of the ZVS two-inductor boost converter to secure an adjustable output voltage range while maintaining the resonant switching transitions. The design method of the resonant converter is thoroughly investigated and explicit control functions relating the circuit timing factors and the voltage gain for a 200-W converter are established. The converter has an input voltage of 20V and is able to produce a variable output voltage from 169V to 340V while retaining ZVS with a frequency variation of 1MHz to 407kHz. Five sets of theoretical, simulation and experimental waveforms are provided for the selected operating points over the variable load range at the end of the paper and they agree reasonably well. The converter has achieved part load efficiencies above 92% and an efficiency of 89.6% at the maximum power of 200W  相似文献   

10.
This paper proposes a new single-phase high-power-factor rectifier, which features regulation by conventional pulsewidth modulation (PWM), soft commutation, and instantaneous average line current control. A new zero-voltage-switching PWM (ZVS-PWM) auxiliary circuit is configured in the presented ZVS-PWM rectifier to perform ZVS in the main switches and the passive switches, and zero-current switching in the auxiliary switch. Furthermore, soft commutation of the main switch is achieved without additional current stress by the presented ZVS-PWM auxiliary circuit. A significant reduction in the conduction losses is achieved, since the circulating current for the soft switching flows only through the auxiliary circuit and a minimum number of switching devices are involved in the circulating current path, and the proposed rectifier uses a single converter instead of the conventional configuration composed of a four-diode front-end rectifier followed by a boost converter. Nine transition states for describing the behavior of the ZVS-PWM rectifier in one switching period are described. A prototype rated at 1 kW, operating 80 kHz, with an input ac voltage of 220 V/sub rms/ and an output voltage of 400 V/sub dc/ has been implemented in the laboratory. An efficiency of 96.7% and power factor over 0.99 has been measured. Analysis, design, and the control circuitry are also presented in this paper.  相似文献   

11.
This paper presents a new single-stage three-level resonant power factor correction ac-dc converter suitable for high power applications (in the order of multiple kilowatts) with a universal input voltage range (90–265 Vrms). The proposed topology integrates the boost input power factor preregulator with a half-bridge three-level resonant dc-dc converter. The converter operation is controlled by means of a combination of phase-shift and variable frequency control. The phase-shift between the switch gate pulses is used to provide the required input current shaping and to regulate the dc-bus voltage to a set reference value for all loading conditions, whereas, variable frequency control is used to tightly regulate the output voltage. An auxiliary circuit is used in order to balance the voltage across the two dc-bus capacitors. Zero voltage switching (ZVS) is also achieved for a wide range of loading and input voltage by having a lagging resonant current in addition to the flowing of the boost inductor current through the body diodes of the upper pair of switches in the free wheeling mode. The resulting circuit, therefore, has high conversion efficiency and lower component stresses making it suitable for high power, wide input voltage range applications. The effectiveness of the proposed converter is verified by analysis, simulation, and experimental results.   相似文献   

12.
The asymmetrical half-bridge (AHB) topology discussed in this paper is one of the complementary driven pulse-width modulated converter topologies, which presents an inherent zero-voltage switching (ZVS) capability. In the previous work, the ideal operation of the converter and the ZVS realization process have been analyzed. However, the influence of the circuit parasitics on the output voltage drop and the design constraints of the circuit parameters to ensure the ZVS operation have not been investigated. The minimum load needed to ensure the ZVS operation is also not readily available. This paper presents a detailed and practical design for a 1-MHz AHB converter. A revised voltage transfer ratio of the converter is derived considering the influence of circuit parasitics and the ZVS transition. Two circuit parameters responsible for maintaining the ZVS operation are the transformer leakage inductance and the interlock delay time between the gate signals of two switches. A design method of the two parameters is proposed, which can ensure the ZVS transition. The possible ZVS range of the load variation is also investigated. A 50-W AHB converter with 1-MHz switching frequency was constructed, and a maximum efficiency of 91% was achieved.  相似文献   

13.
A new pulsewidth modulation (PWM)-controlled quasi-resonant converter for a high-efficiency plasma display panel (PDP) sustaining power module is proposed in this paper. The load regulation of the proposed converter can be achieved by controlling the ripple of the resonant voltage across the primary resonant capacitor with a bidirectional auxiliary circuit, while the main switches are operating at a fixed duty ratio and fixed switching frequency. Hence, the waveforms of the currents can be expected to be optimized from the view-point of conduction loss. Furthermore, the proposed converter has good zero-voltage switching (ZVS) capability, simple control circuits, no hign-voltage ringing problem of rectifier diodes, no dc offset of the magnetizing current and low-voltage stresses of power switches. Thus, the proposed converter shows higher efficiency than that of a half-bridge LLC resonant converter under light load condition. Although it shows the lower efficiency at heavy load, because of the increased power loss in auxiliary circuit, it still shows the high efficiency around 94%. In this paper, operational principles, features of the proposed converter, and analysis and design considerations are presented. Experimental results demonstrate that the output voltage can be controlled well by the auxiliary circuit using the PWM method.   相似文献   

14.
A self core reset and zero voltage switching (ZVS) forward converter topology is presented in this paper. By employing a simple auxiliary circuit, the proposed topology is able to achieve self reset of the power transformer without the use of the conventional tertiary reset winding, and its main switch can be turned on and turned off under ZVS independent of line and load conditions. This simplifies the power transformer, and the switching losses are substantially removed to improve the overall efficiency. Steady state analysis of the circuit is performed. Based on the analysis, a design procedure is presented, and the effects of the circuit parameters on the flux excursion of the power transformer are investigated to make sure self reset can be achieved without increasing the core losses. Simulation and experiment on a 5 V, 100 W prototype circuit operated at 200 kHz are carried out to verify the design, about 5% higher overall efficiency is obtained in the prototype converter than in its conventional counterpart  相似文献   

15.
The paper proposes a current controlled inverter operating in zero voltage switching (ZVS) mode for an induction machine drive. Operation with no voltage stress in the DC link bus is achieved. Together with the soft switching operation, a fixed frequency bang-bang current control technique is also implemented to allow for an accurate shaping of sinusoidal currents to feed the motor. As a result, a ripple free torque profile in steady state operation is achieved. With the soft switching technique it is possible to operate conventional IGBTs at 40 kHz. A detailed analysis of the circuit operation is presented. The feasibility of the proposed scheme is experimentally verified on a prototype  相似文献   

16.
The authors present the exact analysis of the full-bridge zero voltage switching (ZVS) pulse width modulated (PWM) converter by using the state-plane technique. Based on the analysis, they derive the necessary conditions for ZVS operation and the performance characteristics of the converter in terms of characteristic curves from which the converter design procedure can be formulated. The performances of the converter operating outside the limits of ZVS operation, including the switching loss and the attainable efficiency under different load conditions, are also given. The analytical work is confirmed by experimental results  相似文献   

17.
This paper proposes a phase-locked loop (PLL) control scheme for the electronic ballast with a current-equalization network. The PLL control scheme involves detecting the phase signals of both the resonant-tank input voltage and the two leakage-inductor terminals in the transformer; then the operating frequency of the circuit continuously tracks the resonant frequency as a reference frequency. Based on the tracked reference frequency, the required voltage gain of the resonant tank is regulated by offsetting the operating frequency. Consequently, the operating frequency is lower than the resonant frequency to ensure the zero-voltage-switching (ZVS) condition for less turn-on switching losses on the switches. This paper presents the analysis of the proposed PLL control scheme. Finally, the current-equalizing ability in the dimming range is demonstrated by experiments in order to validate and demonstrate the performance and feasibility of the proposed circuit.  相似文献   

18.
Flyback derived power convertor topologies are attractive because of their relative simplicity when compared with other topologies used in low power applications. Incorporation of active-clamp circuitry into the flyback topology serves to recycle transformer leakage energy while minimizing switch voltage stress. The addition of the active-clamp circuit also provides a mechanism for achieving zero-voltage-switching (ZVS) of both the primary and auxiliary switches. ZVS also limits the turn-off di/dt of the output rectifier, reducing rectifier switching losses, and switching noise due to diode reverse recovery. This paper analyzes the behavior of the ZVS active-clamp flyback operating with unidirectional magnetizing current and presents design equations based on this analysis. Experimental results are then given for a 500 W prototype circuit illustrating the soft-switching characteristics and improved efficiency of the power converter. Results from the application of the active-clamp circuit as a low-loss turn-off snubber for IGBT switches is also presented  相似文献   

19.
This brief presents the analysis, design, and implementation of zero-voltage switching (ZVS) active clamp converter with series-connected transformer. A family of isolated ZVS active clamp converters is introduced. The technique of the adopted ZVS commutation will not increase additional voltage stress of switching devices. In the adopted converter with series-connected transformer, each transformer can be operated as an inductor or a transformer. Therefore, no output inductor is needed. To reduce the voltage stress of the switching device in the conventional forward converter, the active clamp technique is used to recycle the energy stored in the transformer leakage back into the input dc source. Finally, experimental results are presented taken from a laboratory prototype with 100-W rated power, input voltage of 155 V, output voltage of 5 V, and operating at 150 kHz. [All rights reserved Elsevier].  相似文献   

20.
This article presents the circuit implementation and design considerations of a zero voltage switching (ZVS) converter with voltage step-up for battery-based applications. An active-clamp circuit including one auxiliary switch and one clamp capacitor is connected in parallel with the main switch to allow resonant behaviour by the output capacitances of switches and transformer leakage inductance during the transition interval. Thus, the ZVS turn-on of switches can be achieved. The switching losses and thermal stresses of the semiconductors are reduced. The circuit configuration, operation principle and design considerations of the converter are discussed in detail. Finally, experiments conducted on a laboratory prototype rated at 200 W are provided to verify the theoretical analysis and the effectiveness of the proposed converter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号