共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang H 《Environmental science & technology》2004,38(5):1421-1427
The technique of DGT (diffusive gradients in thin films) was used for the first time to measure in situ the distribution of Zn and Ni between inorganic species and complexes with fulvic and humic acids in natural waters. With DGT, metals are bound to a resin embedded in a layer of hydrogel after diffusive transport through an adjacent layer of hydrogel. The metal concentrations in the waters can be quantified using simple diffusion equations. By using devices with hydrogels of different pore size, large and small complex species were discriminated. Inorganic species diffuse freely through all gels, but larger organic complexes with fulvic and humic acids diffuse less freely through more restricted gels (gels with smaller pore size). Systematic differences between DGT devices containing gels of different pore size were obtained. Their calibration for the diffusion of fulvic and humic complexes allowed calculation of the concentrations of labile inorganic (Zn, 34.6 +/- 2.5 nM; Ni, 23.5 +/- 0.9 nM) and labile organic (Zn, 43.1 +/- 2.9 nM; Ni, 11.2 +/- 0.7 nM) complexes. The concentration of Zn measured by anodic stripping voltammetry in samples returned to the laboratory lay between the DGT-measured inorganic concentration and the total dissolved concentration, consistent with partial measurement of organic complexes of Zn. The speciation model WHAM successfully predicted the species distribution of Ni, Zn, and Cu, provided that competitive binding by Fe(III) was considered. Using the speciation models WHAM and ECOSAT, free ion activities of Zn and Ni were calculated from (1) the total inorganic species measured by DGT and (2) the total dissolved species and dissolved organic carbon. The calculations confirmed the good model predictions of metal-humic binding but highlighted problems with default databases used for the speciation of inorganic components. 相似文献
2.
The kinetics of Ni sorption to two Delaware agricultural soils were studied to quantitatively assess the relative importance of Ni adsorption on soil organic matter (SOM) and the formation of Ni layered double hydroxide (Ni-LDH) precipitates using both experimental studies and kinetic modeling. Batch sorption kinetic experiments were conducted with both soils at pH 6.0, 7.0, and 7.5 from 24 h up to 1 month. Time-resolved Ni speciation in soils was determined by X-ray absorption spectroscopy (XAS) during the kinetic experiments. A kinetics model was developed to describe Ni kinetic reactions under various reaction conditions and time scales, which integrated Ni adsorption on SOM with Ni-LDH precipitation in soils. The soil Ni speciation (adsorbed phases and Ni-LDH) calculated using the kinetics model was consistent with that obtained through XAS analysis during the sorption processes. Under our experimental conditions, both modeling and XAS results demonstrated that Ni adsorption on SOM was dominant in the short term and the formation of Ni-LDH precipitates accounted for the long-term Ni sequestration in soils, and, more interestingly, that the adsorbed Ni may slowly transfer to Ni-LDH phases with longer reaction times. 相似文献
3.
Field fluxes and speciation of arsines emanating from soils 总被引:2,自引:0,他引:2
Mestrot A Feldmann J Krupp EM Hossain MS Roman-Ross G Meharg AA 《Environmental science & technology》2011,45(5):1798-1804
The biogeochemical cycle of arsenic (As) has been extensively studied over the past decades because As is an environmentally ubiquitous, nonthreshold carcinogen, which is often elevated in drinking water and food. It has been known for over a century that micro-organisms can volatilize inorganic As salts to arsines (arsine AsH(3), mono-, di-, and trimethylarsines, MeAsH(2), Me(2)AsH, and TMAs, respectively), but this part of the As cycle, with the exception of geothermal environs, has been almost entirely neglected because of a lack of suited field measurement approaches. Here, a validated, robust, and low-level field-deployable method employing arsine chemotrapping was used to quantify and qualify arsines emanating from soil surfaces in the field. Up to 240 mg/ha/y arsines was released from low-level polluted paddy soils (11.3 ± 0.9 mg/kg As), primarily as TMAs, whereas arsine flux below method detection limit was measured from a highly contaminated mine spoil (1359 ± 212 mg/kg As), indicating that soil chemistry is vital in understanding this phenomenon. In microcosm studies, we could show that under reducing conditions, induced by organic matter (OM) amendment, a range of soils varied in their properties, from natural upland peats to highly impacted mine-spoils, could all volatilize arsines. Volatilization rates from 0.5 to 70 μg/kg/y were measured, and AsH(3), MeAsH(2), Me(2)AsH, and TMAs were all identified. Addition of methylated oxidated pentavalent As, namely monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to soil resulted in elevated yearly rates of volatilization with up to 3.5% of the total As volatilized, suggesting that the initial conversion of inorganic As to MMAA limits the rate of arsine and methylarsines production by soils. The nature of OM amendment altered volatilization quantitatively and qualitatively, and total arsines release from soil showed correlation between the quantity of As and the concentration of dissolved organic carbon (DOC) in the soil porewater. The global flux of arsines emanating from soils was estimated and placed in the context of As atmospheric inputs, with arsines contributing from 0.9 to 2.6% of the global budget. 相似文献
4.
Desorption kinetics of Cd, Zn, and Ni measured in soils by DGT 总被引:2,自引:0,他引:2
Ernstberger H Zhang H Tye A Young S Davison W 《Environmental science & technology》2005,39(6):1591-1597
DGT (diffusive gradients in thin films) was used to measure the distribution and rates of exchange of Zn, Cd, and Ni between solid phase and solution in five different soils. Soil texture ranged from sandy loam to clay, pH ranged from 4.9 to 7.1, and organic carbon content ranged from 0.8% to 5.8%. DGT devices continuously remove metal to a Chelex gel layer after passage through a well-defined diffusion layer. The magnitude of the induced remobilization flux from the solid phase is related to the pool size of labile metal and the exchange kinetics between dissolved and sorbed metal. DGT devices were deployed over a series of times (4 h to 3 weeks), and the DIFS model (DGT induced fluxes in soils) was used to derive distribution coefficients for labile metal (Kdl) and the rate at which the soil system can supply metal from solid phase to solution, expressed as a response time. Response times for Zn and Cd were short generally (<8 min). They were so short in some soils (<1 min) that no distinction could be made between supply of metal being controlled by diffusion or the rate of release. Generally longer response times for Ni (5-20 min) were consistent with its slow desorption. The major factor influencing Kdl for Zn and Cd was pH, but association with humic substances in the solid phase also appeared to be important. The systematic decline, with increasing pH, in both the pool size of Ni available to the DGT device and the rate constant for its release is consistent with a part of the soil Ni pool being unavailable within a time scale of 1-20 min. This kinetic limitation is likely to limit the availability of Ni to plants. 相似文献
5.
Modeling kinetics of Cu and Zn release from soils 总被引:1,自引:0,他引:1
Kinetics of Cu and Zn release from soil particles was studied using two surface soils with a stirred-flow method. Different solution pH, dissolved organic matter (DOM) concentrations, and flow rates were tested in this study. A model for kinetics controlled sorption/desorption reactions between soils and solutions was globally fit to all experimental data simultaneously. Results were compared to a model that assumes local instantaneous equilibrium. We obtained one unique set of model parameters applicable to different pH, dissolved organic carbon (DOC), and flow conditions. We included DOM complexation of copper ions, which decreased their sorption. The effect of pH was included by assuming proton competition with metal ions for binding sites on soil particles. These results provide the basis for developing predictive models for metal release from soil particles to surface waters and soil solution. 相似文献
6.
Differences in phosphorus and nitrogen delivery to the Gulf of Mexico from the Mississippi River Basin 总被引:9,自引:0,他引:9
Alexander RB Smith RA Schwarz GE Boyer EW Nolan JV Brakebill JW 《Environmental science & technology》2008,42(3):822-830
Seasonal hypoxia in the northern Gulf of Mexico has been linked to increased nitrogen fluxes from the Mississippi and Atchafalaya River Basins, though recent evidence shows that phosphorus also influences productivity in the Gulf. We developed a spatially explicit and structurally detailed SPARROW water-quality model that reveals important differences in the sources and transport processes that control nitrogen (N) and phosphorus (P) delivery to the Gulf. Our model simulations indicate that agricultural sources in the watersheds contribute more than 70% of the delivered N and P. However, corn and soybean cultivation is the largest contributor of N (52%), followed by atmospheric deposition sources (16%); whereas P originates primarily from animal manure on pasture and rangelands (37%), followed by corn and soybeans (25%), other crops (18%), and urban sources (12%). The fraction of in-stream P and N load delivered to the Gulf increases with stream size, but reservoir trapping of P causes large local- and regional-scale differences in delivery. Our results indicate the diversity of management approaches required to achieve efficient control of nutrient loads to the Gulf. These include recognition of important differences in the agricultural sources of N and P, the role of atmospheric N, attention to P sources downstream from reservoirs, and better control of both N and P in close proximity to large rivers. 相似文献
7.
Inputs of copper and zinc from agricultural soils into the aquatic system were investigated in this study, because of their heavy agricultural usage as feed additives and components of fertilizers and fungicides. As the mobility and bioavailability of these metals are affected by their speciation, the lipophilic, colloidal and organic fractions were determined in drainage water from a loamy and a humic soil treated with fungicides or manure. This study therefore investigates the impact of agricultural activity on a natural environment and furthers our understanding of the mobility of metals in agricultural soils and aquatic pollution in rural areas. Marked increases in the total dissolved metal concentrations were observed in the drainage water during rain events with up to 0.3 microM Cu and 0.26 microM Zn depending on the intensity of the rainfall and soil type. The mobile metal fractions were of a small molecular size (<10 kD) and mainly hydrophilic. Lipophilic complexes originating from a dithiocarbamate (DTC) fungicide could not be observed in the drainage water; however, small amounts of lipophilic metal complexes may be of natural origin. Cu was organically complexed to > 99.9% by abundant organic ligands (log K 10.5-11.0). About 50% of dissolved Zn were electrochemically labile, and the other 50% were complexed by strong organic ligands (log K 8.2-8.6). Therefore very little free metal species were found suggesting a low bioavailability of these metals in the drainage water even at elevated metal concentrations. 相似文献
8.
Knowledge of rhizosphere influences on Se speciation and bioavailability is required to predict Se bioavailability to plants. In the present study, plant-availability of Se to aster (Symphyotrichum eatonii (A. Gray) G.L. Nesom) was compared in rhizosphere soils and nonrhizosphere (bulk) soils collected from a reclaimed mine site in southeastern Idaho, U.S. X-ray spectroscopy was used to characterize the oxidation state and elemental distribution of Se in aster roots, rhizosphere soils, and bulk soils. Percent extractable Se in aster rhizosphere soil was greater than extractable Se in corresponding bulk soils in all samples (n = 4, p = 0.042, 0.051, and 0.052 for three extractions). Selenium oxidation state mapping of 28 regions within the samples and X-ray absorption near edge structure (XANES) spectra from 26 points within the samples indicated that the rhizosphere and bulk soil Se species was predominantly reduced Se(-II,0), while in the aster roots, high concentrations of Se(VI) were present. Results show that within the rhizosphere, enhanced Se bioavailability is occurring via oxidation of reduced soil Se to more soluble Se(VI) species. 相似文献
9.
The soil solution speciation and solid-phase fractionation of copper (Cu) and zinc (Zn) in 11 typical uncontaminated soils of South Australia were assessed in relation to heavy metal phytoavailability. The soils were analyzed for pH (4.9-8.4), soil organic matter content (3.5 to 23.8 g of C kg(-1)), total soil solution metal concentrations, Cu8 (49-358 microg kg(-1)) and Zn8 (121-582 microg kg(-1)), and dissolved organic matter (DOM) (69-827 mg of C L(-1)). The solid-liquid partition coefficient (Kd) ranged from between 13.9 and 152.4 L kg(-1) for Cu and 22.6 to 266.3 L kg(-1) for Zn. The phytoavailability of Cu and Zn could be predicted significantly using an empirical model with the solid-phase fractions of Cu and Zn, as obtained from selective sequential extraction scheme, as components. Phytoavailable Cu and Zn were found to significantly correlate with fulvic complex Cu (r= 0.944, P < 0.0001) and exchangeable Zn (r = 0.832, P = 0.002), respectively. The fulvic complex Cu was found to explain 89.2% of the variation in phytoavailable Cu, where as, the exchangeable Zn together with fulvic complex Zn could explain 78.9% of the variation in phytoavailable Zn. The data presented demonstrate the role of solid-phase metal fractions in understanding the heavy metal phytoavailability. The assessment of the role of solid-phase fractions in heavy metal phytoavailability is a neglected area of study and deserves close attention. 相似文献
10.
Kachout SS Mansoura AB Mechergui R Leclerc JC Rejeb MN Ouerghi Z 《Journal of the science of food and agriculture》2012,92(2):336-342
BACKGROUND: Three annual Atriplex species—A. hortensis var. purpurea, A. hortensis var. rubra and A. rosea—growing on soil with various levels of the heavy metals copper, lead, nickel, and zinc, have been investigated. RESULTS: Metal accumulation by Atriplex plants differed among species, levels of polluted soil and tissues. Metals accumulated by Atriplex were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. The increased concentration of heavy metals in soil led to increases in heavy metal shoot and root concentrations of Ni, Cu, Pb and Zn in plants as compared to those grown on unpolluted soil. Accumulation was higher in roots than shoots for all the heavy metals. None of the plants were suitable for phytoextraction because no hyperaccumulator was identified. However, plants with a high bioconcentration factor and low translocation factor have the potential for phytostabilization. Similarly, the correlation between metal concentrations and translocations in plants (BCFs and TFs) using a linear regression was also statistically significant. CONCLUSION: Among the plants studied, var. purpurea was the most efficient in accumulating Pb and Zn in its shoots, whereas var. rubra was most suitable for phytostabilization of sites contaminated with Cu and Ni. Copyright © 2011 Society of Chemical Industry 相似文献
11.
Knowledge of trace metal speciation in soil pore waters is important in addressing metal bioavailability and risk assessment of contaminated soils. Numerous analytical methods have been utilized for determining trace metal speciation in aqueous environmental matrixes; however, most of these methods suffer from significant interferences. The Donnan dialysis membrane technique minimizes these interferences and has been used in this study to determine free Zn2+, Cd2+, Cu2+, and Pb2+ activities in pore waters from 15 agricultural and 12 long-term contaminated soils. The soils vary widely in their origin, pH, organic carbon content, and total metal concentrations. Pore water pM2+ activities also covered a wide range and were controlled by soil pH and total metal concentrations. For the agricultural soils, most of the free metal activities were below detection limit, apart from Zn2+ for which the fraction of free Zn2+ in soluble Zn ranged from 2.3 to 87% (mean 43%). Five of the agricultural soils had detectable free Cd2+ with fractions of free metal ranging from 59 to 102% (mean 75%). For the contaminated soils with detectable free metal concentrations, the fraction of free metal as a percentage of soluble metal varied from 9.9 to 97% (mean 50%) for Zn2+, from 22 to 86% (mean 49%) for Cd2+, from 0.4 to 32.1% (mean 5%) for Cu2+, and from 2.9 to 48.8% (mean 20.1%) for Pb2+. For the contaminated soils, the equilibrium speciation programs GEOCHEM and WHAM Model VI provided reasonable estimates of free Zn2+ fractions in comparison to the measured fractions (R2 approximately 0.7), while estimates of free Cd2+ fractions were less agreeable (R2 approximately 0.5). The models generally predicted stronger binding of Cu2+ to DOC and hence lower fractions of free Cu2+ as compared with the observed fractions. The binding of Cu2+ and Pb2+ to DOC predicted by WHAM Model VI was much strongerthan that predicted by GEOCHEM. 相似文献
12.
Sarret G Balesdent J Bouziri L Garnier JM Marcus MA Geoffroy N Panfili F Manceau A 《Environmental science & technology》2004,38(10):2792-2801
Soils that have been acutely contaminated by heavy metals show distinct characteristics, such as colonization by metal-tolerant plant species and topsoil enrichment in weakly degraded plant debris, because biodegradation processes are strongly inhibited by contamination. Such an organic topsoil, located downwind of an active zinc smelter and extremely rich in Zn (approximately 2%, dry weight), was investigated by X-ray diffraction, synchrotron-based X-ray microfluorescence, and powder- and micro-extended X-ray absorption fine structure (EXAFS) spectroscopy for Zn speciation and by isotopic dilution for Zn lability. EXAFS spectra recorded on size fractions and on selected spots of thin sections were analyzed by principal component analysis and linear combination fits. Although Zn primary minerals (franklinite, sphalerite, and willemite) are still present (approximately 15% of total Zn) in the bulk soil, Zn was found to be predominantly speciated as Zn-organic matter complexes (approximately 45%), outer-sphere complexes (approximately 20%), Zn-sorbed phosphate (approximately 10%), and Zn-sorbed iron oxyhydroxides (approximately 10%). The bioaccumulated Zn fraction is likely complexed to soil organic matter after the plants' death. The proportion of labile Zn ranges from 54 to 92%, depending on the soil fraction, in agreement with the high proportion of organically bound Zn. Despite its marked lability, Zn seems to be retained in the topsoil thanks to the huge content of organic matter, which confers to this horizon a high sorption capacity. The speciation of Zn in this organic soil horizon is compared with that found in other types of soils. 相似文献
13.
The technique of diffusive gradients in thin films (DGT) has been suggested to sample an available fraction of metals in soil. The objectives of this study were to compare DGT measurements with commonly measured fractions of Zn in soil, viz, the soil solution concentration and the total Zn concentration. The DGT technique was used to measure fluxes and interfacial concentrations of Zn in three series of field-contaminated soils collected in transects toward galvanized electricity pylons and in 15 soils amended with ZnCl2 at six rates. The ratio of DGT-measured concentration to pore water concentration of Zn, R, varied between 0.02 and 1.52 (mean 0.29). This ratio decreased with decreasing distribution coefficient, Kd, of Zn in the soil, which is in agreement with the predictions of the DGT-induced fluxes in soils (DIFS) model. The R values predicted with the DIFS model were generally larger than the observed values in the ZnCl2-amended soils at the higher Zn rates. A modification of the DIFS model indicated that saturation of the resin gel was approached in these soils, despite the short deployment times used (2 h). The saturation of the resin with Zn did not occur in the control soils (no Zn salt added) or the field-contaminated soils. Pore water concentration of Zn in these soils was predicted from the DGT-measured concentration and the total Zn content. Predicted values and observations were generally in good agreement. The pore water concentration was more than 5 times underpredicted for the most acid soil (pH = 3) and for six other soils, for which the underprediction was attributed to the presence of colloidal Zn in the soil solution. 相似文献
14.
Arsenic speciation and volatilization from flooded paddy soils amended with different organic matters 总被引:6,自引:0,他引:6
Arsenic (As) methylation and volatilization in soil can be increased after organic matter (OM) amendment, though the factors influencing this are poorly understood. Herein we investigate how amended OM influences As speciation as well as how it alters microbial processes in soil and soil solution during As volatilization. Microcosm experiments were conducted on predried and fresh As contaminated paddy soils to investigate microbial mediated As speciation and volatilization under different OM amendment conditions. These experiments indicated that the microbes attached to OM did not significantly influence As volatilization. The arsine flux from the treatment amended with 10% clover (clover-amended treatment, CT) and dried distillers grain (DDG) (DDG-amended treatment, DT2) were significantly higher than the control. Trimethylarsine (TMAs) was the dominant species in arsine derived from CT, whereas the primary arsine species from DT2 was TMAs and arsine (AsH(3)), followed by monomethylarsine (MeAsH(2)). The predominant As species in the soil solutions of CT and DT2 were dimethylarsinic acid (DMAA) and As(V), respectively. OM addition increased the activities of arsenite-oxidizing bacteria (harboring aroA-like genes), though they did not increase or even decrease the abundance of arsenite oxidizers. In contrast, the abundance of arsenate reducers (carrying the arsC gene) was increased by OM amendment; however, significant enhancement of activity of arsenate reducers was observed only in CT. Our results demonstrate that OM addition significantly increased As methylation and volatilization from the investigated paddy soil. The physiologically active bacteria capable of oxidization, reduction, and methylation of As coexisted and mediated the As speciation in soil and soil solution. 相似文献
15.
Predicting the mobility of heavy metals in soils requires models that accurately describe metal adsorption in the presence of competing cations. They should also be easily adjustable to specific soil materials and applicable in reactive transport codes. In this study, Cd adsorption to an acidic soil material was investigated over a wide concentration range (10(-8) to 10(-2) M CdCl2) in the presence of different background electrolytes (10(-4) to 10(-2) M CaCl2 or MgCl2 or 0.05 to 0.5 M NaCl). The adsorption experiments were conducted at pH values between 4.6 and 6.5 A reaction-based sorption model was developed using a combination of nonspecific cation exchange reactions and competitive sorption reactions to sites with high affinity for heavy metals. This combined cation exchange/specific sorption (CESS) model accurately described the entire Cd sorption data set. Coupled to a solute transport code, the model accurately predicted Cd breakthrough curves obtained in column transport experiments. The model was further extended to describe competitive sorption and transport of Cd, Zn, and Ni. At pH 4.6, both Zn and Ni exhibited similar sorption and transport behavior as observed for Cd. In all transport experiments conducted under acidic conditions, heavy metal adsorption was shown to be reversible and kinetic effects were negligible within time periods ranging from hours up to four weeks. 相似文献
16.
Vespa M Dähn R Grolimund D Wieland E Scheidegger AM 《Environmental science & technology》2006,40(7):2275-2282
Cement-based materials play an important role in multi-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive wastes. Cement is used to condition and stabilize the waste materials and to construct the engineered barrier systems (container, backfill, and liner materials) of repositories for radioactive waste. In this study, Ni uptake by hardened cement paste has been investigated with the aim of improving our understanding of the immobilization process of heavy metals in cement on the molecular level. X-ray absorption spectroscopy (XAS) coupled with diffuse reflectance spectroscopy (DRS) techniques were used to determine the local environment of Ni in cement systems. The Ni-doped samples were prepared at two different water/cement ratios (0.4, 1.3) and different hydration times (1 hour to 1 year) using a sulfate-resisting Portland cement. The metal loadings and the metal salts added to the system were varied (50 up to 5000 mg/kg; NO3(-), SO4(2-), Cl-). The XAS study showed that for all investigated systems Ni(ll) is predominantly immobilized in a layered double hydroxide (LDH) phase, which was corroborated by DRS measurements. Only a minor extent of Ni(ll) precipitates as Ni-hydroxides (alpha-Ni(OH)2 and beta-Ni(OH)2). This finding suggests that Ni-Al LDH, rather than Ni-hydroxides, is the solubility-limiting phase in the Ni-doped cement system. 相似文献
17.
Sato S Solomon D Hyland C Ketterings QM Lehmann J 《Environmental science & technology》2005,39(19):7485-7491
Previous studies suggested an increase in the proportion of calcium phosphates (CaP) of the total phosphorus (P) pool in soils with a long-term poultry manure application history versus those with no or limited application histories. To understand and predict long-term P accumulation and release dynamics in these highly amended soils, it is important to understand what specific P species are being formed. We assessed forms of CaP formed in poultry manure and originally acidic soil in response to different lengths of mostly poultry manure applications using P K-edge X-ray absorption near-edge structure (XANES) spectroscopy. Phosphorus K-edge XANES spectra of poultry manure showed no evidences of crystalline P minerals but dominance of soluble CaP species and free and weakly bound phosphates (aqueous phosphate and phosphate adsorbed on soil minerals). Phosphate in an unamended neighboring forest soil (pH 4.3) was mainly associated with iron (Fe) compounds such as strengite and Fe-oxides. Soils with a short-term manure history contained both Fe-associated phosphates and soluble CaP species such as dibasic calcium phosphate (DCP) and amorphous calcium phosphate (ACP). Long-term manure application resulted in a dominance of CaP forms confirming our earlier results obtained with sequential extractions, and a transformation from soluble to more stable CaP species such as beta-tricalcium calcium phosphate (TCP). Even after long-term manure application (> 25 yr and total P in soil up to 13,307 mg kg(-1)), however, none of the manure-amended soils showed the presence of crystalline CaP. With a reduction or elimination of poultry manure application to naturally acidic soils, the pH of the soil is likely to decrease, thereby increasing the solubility of Ca-bonded inorganic P minerals. Maintaining a high pH is therefore an important strategy to minimize P leaching in these soils. 相似文献
18.
The stability and the formation and dissolution kinetics of mixed trace metal precipitates in soils are currently unknown. The objective of this study was to investigate slow sorption and release processes of Zn and Ni in a loamy soil using a combination of soil column experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy. To investigate slow sorption processes, the soil material was packed into columns and leached with 5400 pore volumes of 10(-2) M CaCl2 solutions containing either ZnCl2 (5.2 x 10(-5) M) or NiCl2 (5.2 x 10(-5) M) or both ZnCl2 and NiCl2 (5.2 x 10(-5) M each). The Zn and Ni concentrations in the column effluents were monitored. The metal breakthrough curves showed that slow sorption processes lead to metal retention, whereby Zn was more strongly retained than Ni. In the experiment with both Zn and Ni present, amounts of Zn and Ni similar to those in the experiments with either Zn or Ni alone were retained. Analysis of soil samples by EXAFS spectroscopy showed that layered double hydroxide (LDH)-type precipitates had formed in all columns and that a mixed ZnNi-LDH had formed in the presence of both Zn and Ni. The dissolution of those precipitates under acidic conditions was assessed by subsequent leaching of the columns with a 10(-2) M CaCl2 solution at pH 3.0 (approximately 3000 pore volumes). When only Zn was present, 95% of the retained Zn was leached at pH 3. In contrast, only 23% of the retained Ni was leached in experiments with Ni alone. When Zn and Ni were present, 90% of the retained Zn and 87% of the retained Ni were released upon acidification. EXAFS analysis revealed that the LDH phases in the Zn experiment and the Zn-Ni experiment had been completely dissolved, while the LDH phase formed in the Ni experiment was still present. The higher resistance of Ni-LDH against dissolution at low pH could also be shown in dissolution studies with synthetic Zn-LDH, Ni-LDH, and ZnNi-LDH. Our results suggest that the individual rates at which Zn and Ni cations enter into the LDH structure determine the composition of the mixed ZnNi-LDH precipitate, and that the LDH composition determines the rate at which the LDH phase dissolves under acidic conditions. 相似文献
19.
Reduced inorganic sulfur speciation in drain sediments from acid sulfate soil landscapes 总被引:2,自引:0,他引:2
We examined processes regulating reduced inorganic sulfur (RIS) speciation in drain sediments from coastal acid sulfate soil (ASS) landscapes. Pore water sulfide was undetectable or present at low levels (0.6-18.8 microM), consistent with FeS(s) precipitation in the presence of high concentrations of Fe2+ (generally >2 mM). Acid-volatile sulfide (AVS), with concentrations up to 1019 micromol g(-1), comprised a major proportion of RIS. The AVS to pyrite-S ratios were up to 2.6 in sediment profiles containing abundant reactive Fe (up to approximately 4000 micromol g(-1)). Such high AVS:pyrite-S ratios are indicative of inefficient conversion of FeS(s) to pyrite. This may be due to low pore water sulfide levels causing slow rates of pyrite formation via the polysulfide and H2S oxidation pathways. Overall, RIS speciation in ASS-associated drain sediments is unique and is largely regulated by abundant reactive Fe. 相似文献
20.
Solid-solution partitioning of Cd, Cu, Ni, Pb, and Zn in the organic horizons of a forest soil 总被引:2,自引:0,他引:2
Sauvé S Manna S Turmel MC Roy AG Courchesne F 《Environmental science & technology》2003,37(22):5191-5196
We report the solid-liquid partitioning of Cd, Cu, Ni, Pb, and Zn in 60 organic horizon samples of forest soils from the Hermine Watershed (St-Hippolyte, PQ, Canada). The mean Kd values are respectively 1132, 966, 802, 3337 and 561. Comparison of those Kd coefficients to published compilation values show that the Kd values are lower in acidic organic soil horizons relative to the overall mean Kd values compiled for mineral soils. But, once normalized to a mean pH of 4.4, the Kd values in organic soil horizons demonstrate the high sorption affinity of organic matter, which is either as good as or up to 30 times higher than mineral soil materials for sorbing trace metals. Regression analysis shows that, within our data set, pH and total metal contents are not consistent predictors of metal partitioning. Indeed, metal sorption by the solid phase must be studied in relation to complexation by dissolved organic ligands, and both processes may sometime counteract one another. 相似文献