首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
碳化硅多孔陶瓷制备技术研究进展   总被引:1,自引:1,他引:1  
分别对碳化硅多孔陶瓷的主要制备方法进行了阐述,分析了这些制备方法的主要优缺点,并指出将来的研究重点应是高性能碳化硅多孔陶瓷的低成本制备技术及其应用领域的进一步拓展。另外,各种制备工艺条件同碳化硅多孔陶瓷性能之间的内在联系研究也应该进一步深化。  相似文献   

2.
制备技术是获得高性能碳化硅多孔陶瓷的关键.综述了碳化硅合成方法和成孔方法对碳化硅多孔陶瓷一些主要的制备技术,主要包括烧成/烧结法、原位氧化反应结合法、反应烧结法、碳热还原法、先驱体转化法、化学气相渗透法等.介绍了各种方法的工艺过程,分析了优缺点,指出了今后发展的方向.  相似文献   

3.
分别对碳化硅多孔陶瓷的主要制备方法进行了阐述,分析了这些制备方法的主要优缺点,并指出将来的研究重点应是高性能碳化硅多孔陶瓷的低成本制备技术及其应用领域的进一步拓展.另外,各种制备工艺条件同碳化硅多孔陶瓷性能之间的内在联系研究也应该进一步深化.  相似文献   

4.
碳化硅多孔陶瓷具有抗腐蚀、抗热震性及低的热膨胀系数等特点,在冶金、化工、环保、航空、微电子等技术领域具有广泛的应用.综合阐述了制备碳化硅多孔陶瓷的主要工艺与制备过程,并对相关工艺的特点进行了分析,最后展望了碳化硅多孔陶瓷的发展趋势.  相似文献   

5.
碳化硅网眼多孔陶瓷的制备   总被引:28,自引:0,他引:28  
本工作采用有机泡沫浸渍工艺制备了具有相互贯通气孔的碳化硅网眼多孔陶瓷.通过选择合适的流变剂获得了对海绵具有良好涂覆性能的浆料.探讨了粘结剂对网眼多孔陶瓷性能的影响,结果表明:硅溶胶是一种比较理想的粘结剂.XRD、SEM研究了烧结制品的晶相组成及显微结构,同时还对烧结制品的孔筋密度、气孔率、力学性能等进行了表征.本工作在1450℃下保温1h获得了气孔率为75%~85%、抗弯强度达2.5MPa以上的碳化硅网眼多孔陶瓷,其主要晶相由α-SiC、α-Al、方石英和莫来石组成.  相似文献   

6.
原位反应烧结法制备SiC多孔木材陶瓷   总被引:1,自引:0,他引:1  
以香杉木粉、硅粉和环氧树脂为原料,先低温制成木材陶瓷,然后利用高温原位反应烧结工艺制成了具有原木微观结构的SiC多孔木材陶瓷。TGA研究了木粉和环氧树脂的热分解行为,用XRD和SEM研究SiC多孔木材陶瓷的物相组成和微观结构,用阿基米德法测定SiC多孔木材陶瓷的显气孔率,系统研究了烧结温度和成分配比对SiC多孔木材陶瓷的摩擦学性能的影响。结果显示:SiC多孔木材陶瓷具有类似于原始木材的微观管胞结构;显气孔率随着烧结温度的升高而降低,但随着Si含量的升高而升高;在1600℃下制备的SiC多孔木材陶瓷具有良好的摩擦学性能,后期析出的碳颗粒可以有效降低磨损量。  相似文献   

7.
以碳化硅(SiC)和不同铝源(多孔Al2O3/纳米Al2O3/Al(OH)3)为起始原料,通过原位反应结合工艺制备莫来石结合碳化硅多孔陶瓷。主要研究了不同铝源及温度对多孔陶瓷抗弯强度、气孔率、线性伸缩率等性能的影响,并采用XRD和SEM分析表征了样品的物相组成与断面形貌。结果表明:以多孔Al2O3为铝源,在1450℃下保温3h制备的碳化硅多孔陶瓷的综合性能最优,其强度为58 MPa,气孔率为41.9%;烧结温度对3种铝源所制备的多孔陶瓷具有相同的影响,随着温度的升高,强度逐渐升高,气孔率逐渐降低,线性收缩率逐渐增大。  相似文献   

8.
利用氧化反应结合工艺,从物相组成、氧化行为、致密化、力学性能和显微结构几个方面研究了将稀土氧化物(Y2O3、La2O3和CeO2)添加到SiC和Al2O3混合物中对SiC陶瓷的影响.结果表明,稀土氧化物的添加有利于氧化反应结合SiC陶瓷中莫来石相生成,使莫来石化温度下降了大约100℃;同时,稀土氧化物的添加不仅降低了反应结合SiC陶瓷的气孔率,还使其力学性能明显得到提高;在1300℃、保温2h烧结,4.5%-CeO2(质量分数)掺杂样品的气孔率下降到5%,抗弯强度达到150MPa.  相似文献   

9.
研究了反应烧结多孔碳化硅(RPSC)陶瓷在1200--1500℃干燥氧气中的氧化行为。 结果表明, 与碳化硅致密块的高温氧化行为不同, 温度越高, RPSC的氧化增重越小; RPSC的整个氧化过程分为氧化初期的快速增重阶段和缓慢氧化的平台阶段, 氧化动力学曲线符合渐近线规律。 RPSC的高温氧化在外表面和孔隙内同时发生, 孔隙内的氧化占主导地位, 最大氧化增重与孔隙率成线性关系。当孔内氧化速率高于氧气向孔内的传输速率时, 氧化主要发生在孔口附近, 氧化硅很快将孔封闭, 阻止了孔内继续氧化。  相似文献   

10.
为拓展铁尾矿的资源化利用途径,本研究分别以细颗粒高硅铁尾矿、铁尾矿+石墨粉以及铁尾矿+石墨粉+碳化硅粉为原料,采用泡沫注凝成形-常压烧结、泡沫注凝成形-反应烧结和模压成形-反应烧结工艺制备了铁尾矿多孔陶瓷和三种以碳化硅为主晶相的多孔陶瓷。通过DSC-TG和XRD分析,研究了铁尾矿自身的烧结过程以及铁尾矿与石墨之间的碳热还原反应烧结过程,对比分析了四种多孔陶瓷材料的孔隙率、压缩强度、热导率等性能。结果表明,以铁尾矿为原料可制备具有较高孔隙率(87.2%)、压缩强度(1.37 MPa)和低热导率(0.036 W/(m·K))的铁尾矿多孔陶瓷,它是一种高效保温隔热材料;利用铁尾矿与石墨之间的碳热还原反应可获得碳化硅多孔陶瓷,其热导率显著提高,但强度偏低;而在原料中加入部分碳化硅,可以明显改善多孔陶瓷的压缩强度,获得具有高孔隙率(91.6%)、较高压缩强度(1.19MPa)和热导率(0.31W/(m·K))的碳化硅多孔陶瓷,它可作为轻质导热材料或复合相变材料的载体使用;与泡沫注凝成形工艺相比,采用模压成形工艺制备的碳化硅多孔陶瓷虽然孔隙率有所降低(79.3%),但热导率得到显著提升(1.15 ...  相似文献   

11.
原位反应结合多孔Si3N4陶瓷的制备及其介电性能   总被引:2,自引:0,他引:2  
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

12.
以硅藻土为主要硅源,同时配合SiC、Al_2O_3、滑石粉末为主要原料,通过反应烧结技术制备SiC/堇青石复相多孔陶瓷,研究了不同原料配比对SiC/堇青石复相多孔陶瓷的相组成、显微结构、抗弯强度、气孔率的影响,同时在得出最优配比组的基础上,研究石墨造孔剂的含量、碳化硅颗粒粒径、孔径分布等因素对SiC/堇青石复相多孔陶瓷的影响。结果表明:当SiC与其余物料理论质量比为8∶2时,在1250℃下保温3h制备的样品综合性能最佳,其气孔率为37.721%,抗弯强度达到49.1887 MPa。  相似文献   

13.
一种新型多孔SiC的制备与性能研究   总被引:1,自引:0,他引:1  
以滤纸和酚醛树脂为原料, 通过模压成型、固化、碳化和渗硅制备出微观结构均匀的多孔碳化硅. 碳化的温度固定时, 多孔碳的气孔率随酚醛树脂用量的增大而减少, 弯曲强度随着酚醛树脂用量的增大而增大. 酚醛树脂/滤纸两种成分的质量比固定时, 气孔率随着碳化温度的升高而减小, 弯曲强度随着碳化温度的升高而增大, 从SEM照片可以看出, 由滤纸纤维的杂乱排列和碳化时不同的收缩率产生了相互连通不规则的孔, 在多孔碳化硅结构中也得以保留. 多孔碳化硅的气孔率随着排硅时间的增加而增大, 强度和韧性随着排硅时间的增加而减小. 在1650℃, 并经过30min排Si, 较大孔隙中的Si就可以排掉, 此时得到的多孔SiC具有较高的强度和韧性.  相似文献   

14.
以氮化硅(Si3N4)和氧化铝(Al2O3)为起始原料, 利用原位反应结合技术制备Si3N4多孔陶瓷. 研究烧结温度和保温时间对Si3N4多孔陶瓷的微观结构、力学性能以及介电性能的影响. 结果表明: 烧结温度在1350℃以下, 保温时间<4h时, 随着烧结温度的升高, 保温时间的延长, 样品的强度和介电常数增大; 但条件超出这个范围, 结果刚好相反; 物相分析表明多孔陶瓷主要由Si3N4和Al2O3以及Si3N4氧化生成的SiO2(方石英)组成. 所制备的多孔Si3N4陶瓷的气孔率范围为25.34%~48.86%, 抗弯强度为34.77~127.85MPa, 介电常数为3.0~4.6, 介电损耗约为0.002.  相似文献   

15.
研究了陶瓷粘结剂含量、碳化硅颗粒粒径以及烧结温度对高温气体过滤用碳化硅多孔陶瓷抗弯强度和气孔率的影响. 利用X射线衍射测试了多孔陶瓷烧结后的物相组成. 陶瓷粘结剂含量的增加使碳化硅多孔陶瓷的气孔率快速下降, 在陶瓷粘结剂含量15wt%时, 碳化硅多孔陶瓷可具有较高的气孔率(37.5%)和抗弯强度(27.63MPa). 随着碳化硅颗粒粒径从300?m减少到87um, 碳化硅多孔陶瓷的气孔率和抗弯强度可同时提高, 气孔率从35.5%增加到了42.4%, 而抗弯强度从19.92MPa增加到了25.18MPa. 碳化硅多孔陶瓷的烧结温度从1300℃增加到1400℃过程中, 其气孔率从38.7%迅速下降到35.4%, 而其抗弯强度一直在27MPa左右, 没有大幅变化, 所以该多孔陶瓷的烧结温度应该选在陶瓷粘结剂熔点(1300℃)附近, 不宜过高.  相似文献   

16.
采用聚碳硅烷和SiC粉体为原料低压成型低温烧结制备SiC多孔陶瓷,研究了聚碳硅烷含量对SiC多孔陶瓷性能的影响。SEM分析表明,聚碳硅烷裂解产物将SiC颗粒粘结起来,多孔陶瓷具有相互连通的开孔结构。烧成SiC多孔陶瓷的孔隙孔径为单峰分布、分布窄,室温至800℃之间多孔陶瓷的平均热膨胀系数为4.2×10-6 K-1。随着聚碳硅烷含量的增大,SiC多孔陶瓷的孔隙率降低、三点弯折强度增大,当聚碳硅烷质量分数为10%时分别为44.3%和31.7MPa。  相似文献   

17.
采用SiC粉体与聚碳硅烷(PCS)为原料浇注成型低温烧结制备SiC多孔陶瓷,研究了PCS含量对SiC多孔陶瓷性能的影响。结果表明,PCS含量大于2wt%时可浇注成型,PCS经烧结后生成裂解产物将SiC颗粒粘结起来。所得SiC多孔陶瓷孔径呈单峰分布、孔径分布窄、热膨胀系数低、烧结过程中线收缩率小。随着PCS含量的增大烧成SiC多孔陶瓷的孔隙率降低,但强度显著提高。PCS含量为6wt%时多孔陶瓷的孔隙率、弯折强度和线收缩率分别为36.2%、33.8MPa和0.42%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号