首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The cleavage by calicheamicin gamma 1I (CLM gamma 1I) of a nucleosome formed on the 5S RNA gene of Xenopus borealis was studied in vitro as a first step toward the understanding of CLM gamma 1I-chromatin interactions within the cell. The drug does not cleave in the region of the dyad axis of the nucleosome. Outside of this region, double-stranded cleavage occurs with a periodicity of 10-11 bp. The sites of cleavage correspond to DNA sequences facing outward in the nucleosome. The drug shows some sequence preference of cleavage within these accessible sites. The predominant cleavage event within this nucleosome occurs at -1 helical turn from the dyad axis. This site constitutes a "hot spot" for CLM gamma 1I cleavage within the 5S nucleosome. We observe an overall footprinting effect whereby the drug preferentially cleaves DNA located outside the nucleosome core (analogous to the linker DNA of chromatin) as compared to cleavage within the nucleosome core. We discuss the importance of accessibility, structural deformations of DNA within the nucleosome, and steric constraints posed by sequence, in the recognition and cleavage of nucleosomal DNA by calicheamicin.  相似文献   

3.
4.
5.
Ribosome biogenesis in eucaryotes involves many small nucleolar ribonucleoprotein particles (snoRNP), a few of which are essential for processing pre-rRNA. Previously, U8 snoRNA was shown to play a critical role in pre-rRNA processing, being essential for accumulation of mature 28S and 5.8S rRNAs. Here, evidence which identifies a functional site of interaction on the U8 RNA is presented. RNAs with mutations, insertions, or deletions within the 5'-most 15 nucleotides of U8 do not function in pre-rRNA processing. In vivo competitions in Xenopus oocytes with 2'O-methyl oligoribonucleotides have confirmed this region as a functional site of a base-pairing interaction. Cross-species hybrid molecules of U8 RNA show that this region of the U8 snoRNP is necessary for processing of pre-rRNA but not sufficient to direct efficient cleavage of the pre-rRNA substrate; the structure or proteins comprising, or recruited by, the U8 snoRNP modulate the efficiency of cleavage. Intriguingly, these 15 nucleotides have the potential to base pair with the 5' end of 28S rRNA in a region where, in the mature ribosome, the 5' end of 28S interacts with the 3' end of 5.8S. The 28S-5.8S interaction is evolutionarily conserved and critical for pre-rRNA processing in Xenopus laevis. Taken together these data strongly suggest that the 5' end of U8 RNA has the potential to bind pre-rRNA and in so doing, may regulate or alter the pre-rRNA folding pathway. The rest of the U8 particle may then facilitate cleavage or recruitment of other factors which are essential for pre-rRNA processing.  相似文献   

6.
7.
To understand the mechanisms by which the chromatin-remodeling SWI/SNF complex interacts with DNA and alters nucleosome organization, we have imaged the SWI/SNF complex with both naked DNA and nucleosomal arrays by using energy-filtered microscopy. By making ATP-independent contacts with DNA at multiple sites on its surface, SWI/SNF creates loops, bringing otherwise-distant sites into close proximity. In the presence of ATP, SWI/SNF action leads to the disruption of nucleosomes within domains that appear to be topologically constrained by the complex. The data indicate that the action of one SWI/SNF complex on an array of nucleosomes can lead to the formation of a region where multiple nucleosomes are disrupted. Importantly, nucleosome disruption by SWI/SNF results in a loss of DNA content from the nucleosomes. This indicates a mechanism by which SWI/SNF unwraps part of the nucleosomal DNA.  相似文献   

8.
Nuclear pre-mRNA splicing necessitates specific recognition of the pre-mRNA splice sites. It is known that 5' splice site selection requires base pairing of U6 snRNA with intron positions 4-6. However, no factor recognizing the highly conserved 5' splice site GU has yet been identified. We have tested if the known U6 snRNA-pre-mRNA interaction could be extended to include the first intron nucleotides and the conserved 50GAG52 sequence of U6 snRNA. We observe that some combinations of 5' splice site and U6 snRNA mutations produce a specific synthetic block to the first splicing step. In addition, the U6-G52U allele can switch between two competing 5' splice sites harboring different nucleotides following the cleavage site. These results indicate that U6 snRNA position 52 interacts with the first nucleotide of the intron before 5' splice site cleavage. Some combinations of U6 snRNA and pre-mRNA mutations also blocked the second splicing step, suggesting a role for the corresponding nucleotides in a proofreading step before exon ligation. From studies in diverse organisms, various functions have been ascribed to the conserved U6 snRNA 47ACAGAG52 sequence. Our results suggest that these discrepancies might reflect variations between different experimental systems and point to an important conserved role of this sequence in the splicing reaction.  相似文献   

9.
10.
The flap endonuclease (FEN) of the hyperthermophilic archaeon Methanococcus jannaschii was expressed in Escherichia coli and purified to homogeneity. FEN retained activity after preincubation at 95 degrees C+ for 15 min. A pseudo-Y-shaped substrate was formed by hybridization of two partially complementary oligonucleotides. FEN cleaved the strand with the free 5' end adjacent to the single-strand-duplex junction. Deletion of the free 3' end prevented cleavage. Hybridization of a complementary oligonucleotide to the free 3' end moved the cleavage site by 1 to 2 nucleotides. Hybridization of excess complementary oligonucleotide to the free 5' end failed to block cleavage, although this substrate was refractory to cleavage by the 5'-3' exonuclease activity of Taq DNA polymerase. For verification, the free 5' end was replaced by an internally labeled hairpin structure. This structure was a substrate for FEN but became a substrate for Taq DNA polymerase only after exonucleolytic cleavage had destabilized the hairpin. A circular duplex substrate with a 5' single-stranded branch was formed by primer extension of a partially complementary oligonucleotide on virion phiX174. This denaturation-resistant substrate was used to examine the effects of temperature and solution properties, such as pH, salt, and divalent ion concentration on the turnover number of the enzyme.  相似文献   

11.
12.
13.
A study of the cis-acting elements involved in the 3' end formation of the RNAs from the major late L4 family of adenovirus-2 was undertaken. Series of 5' or 3' end deletion mutants and mutants harboring either internal deletions or substitutions were prepared and assayed for in vitro cleavage. This first allowed the demonstration of a sequence, located at -6 to -29, relative to AAUAAA, whose deletion or substitution reduces cleavage efficiency at the L4 polyadenylation site two to three fold. This upstream efficiency element 5' AUCUUUGUUGUC/AUCUCUGUGCUG 3' is constituted of a partially repeated 12 nucleotide long, UCG rich sequence. The activities of the 2 sequence elements in cleavage are additive. We also searched for regulatory sequences downstream of the L4 polyadenylation site. We found that the deletion or substitution of a 30 nucleotide long UCG rich sequence, between nucleotides +7 and +35 relative to the cleavage site and harboring a UCCUGU repeat reduces cleavage efficiency at least ten fold. A GUUUUU sequence, starting at +35 had no influence. Thus, the usage of the L4 polyadenylation site requires down-stream sequences different from the canonical GU or U boxes and is regulated by upstream sequence elements.  相似文献   

14.
15.
Acridine-induced frameshift mutagenesis in bacteriophage T4 has been shown to be dependent on T4 topoisomerase. In the absence of a functional T4 topoisomerase, in vivo acridine-induced mutagenesis is reduced to background levels. Further, the in vivo sites of acridine-induced deletions and duplications correlate precisely with in vitro sites of acridine-induced T4 topoisomerase cleavage. These correlations suggest that acridine-induced discontinuities introduced by topoisomerase could be processed into frameshift mutations. The induced mutations at these sites have a specific arrangement about the cleavage site. Deletions occur adjacent to the 3' end and duplications occur adjacent to the 5' end of the cleaved bond. It was proposed that at the nick, deletions could be produced by the 3'-->5' removal of bases by DNA polymerase-associated exonuclease and duplications could be produced by the 5'-->3' templated addition of bases. We have tested in vivo for T4 DNA polymerase involvement in nick processing, using T4 phage having DNA polymerases with altered ratios of exonuclease to polymerase activities. We predicted that the ratios of the deletion to duplication mutations induced by acridines in these polymerase mutant strains would reflect the altered exonuclease/polymerase ratios of the mutant T4 DNA polymerases. The results support this prediction, confirming that the two activities of the T4 DNA polymerase contribute to mutagenesis. The experiments show that the influence of T4 DNA polymerase in acridine-induced mutation specificities is due to its processing of acridine-induced 3'-hydroxyl ends to generate deletions and duplications by a mechanism that does not involve DNA slippage.  相似文献   

16.
The segregation of daughter DNA molecules at the end stage of replication of plasmid ColE1 was examined. When circular ColE1 DNA replicates in a cell extract at a high KCl concentration (140 mM), a unique class of molecules accumulates. When the molecule is cleaved by a restriction enzyme that cuts the ColE1 DNA at a single site, an X-shaped molecule in which two linear components are held together around the origin of DNA replication is made. For a large fraction of these molecules, the 5' end of the leading strand remains at the origin and the 3' end of the strand is about 30 nucleotides upstream of the origin. The 3' end of the lagging strand is located at the terH site (17 nucleotides upstream of the origin) and the 5' end of the strand is a few hundred nucleotides upstream of the terH site. Thus the parental strands of the molecule intertwine with each other only once. When the KCl concentration is lowered to 70 mM, practically all of these molecules are converted to daughter circular monomers or to catenanes consisting of two singly interlocked circular units.  相似文献   

17.
We have employed a site-directed photochemical cross-linking procedure to precisely map interactions between nucleosomal DNA and the C-terminal tail of core histone H2A. We find that this tail has the potential to contact multiple sites within the nucleosome and that these contacts are dependent upon the configuration of the complex. This tail contacts DNA near the dyad axis within nucleosome core particles but rearranges to a site near the edge of the nucleosomal DNA when linker DNA is present. Moreover, in the presence of linker histone H1 the contacts near the edge of the nucleosome but not at the dyad are further rearranged. In addition, we present further evidence for the suggestion that the binding of linker histone causes a subtle but global change in core histone-DNA interactions within the nucleosome [Usachenko, S. I., Gavin, I. M., and Bavykin, S. G. (1996) J. Biol. Chem. 271, 3831-3836].  相似文献   

18.
The mechanisms by which herpesvirus genome ends are fused to form circles after infection and are re-formed by cleavage from concatemeric DNA are unknown. We used the simple structure of guinea pig cytomegalovirus genomes, which have either one repeated DNA sequence at each end or one repeat at one end and no repeat at the other, to study these mechanisms. In circular DNA, two restriction fragments contained fused terminal sequences and had sizes consistent with the presence of single or double terminal repeats. This result implies a simple ligation of genomic ends and shows that circularization does not occur by annealing of single-stranded terminal repeats formed by exonuclease digestion. Cleavage to form the two genome types occurred at two sites, and homologies between these sites identified two potential cis elements that may be necessary for cleavage. One element coincided with the A-rich region of a pac2 sequence and had 9 of 11 bases identical between the two sites. The second element had six bases identical at both sites, in each case 7 bp from the termini. To confirm the presence of cis cleavage elements, a recombinant virus in which foreign sequences displaced the 6- and 11-bp elements 1 kb from the cleavage point was constructed. Cleavage at the disrupted site did not occur. In a second recombinant virus, restoration of 64 bases containing the 6- and 11-bp elements to the disrupted cleavage site restored cleavage. Therefore, cis cleavage elements exist within this 64-base region, and sequence conservation suggests that they are the 6- and 11-bp elements.  相似文献   

19.
20.
DNA shape recognition determines the preferred binding sites for sequence-independent DNA binding proteins, and here we document that archaeal histones assemble archaeal nucleosomes in vitro centered preferentially within (CTG)6 and (CTG)8 repeats, close to junctions with flanking mixed-sequence DNA. Archaeal nucleosomes were not positioned by (CTG)4-, (CTG)5-, or (CTG)3AA(CTG)3-containing DNA sequences. The features of CTG repeat-containing sequences that direct eucaryal nucleosome positioning may also be similarly recognized by archaeal histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号