首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A full-electrochemical method is developed to deposit three dimension structure (3D) flowerlike platinum-ruthenium (PtRu) and platinum-ruthenium-nickel (PtRuNi) alloy nanoparticle clusters on multi-walled carbon nanotubes (MWCNTs) through a three-step process. The structure and elemental composition of the PtRu/MWCNTs and PtRuNi/MWCNTs catalysts are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray polycrystalline diffraction (XRD), IRIS advantage inductively coupled plasma atomic emission spectroscopy (ICP-AES), and X-ray photoelectron spectroscopy (XPS). The presence of Pt(0), Ru(0), Ni(0), Ni(OH)2, NiOOH, RuO2 and NiO is deduced from XPS data. Electrocatalytic properties of the resulting PtRu/MWCNTs and PtRuNi/MWCNTs nanocomposites for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) are investigated. Compared with the Pt/MWCNTs, PtNi/MWCNTs and PtRu/MWCNTs electrodes, an enhanced electrocatalytic activity and an appreciably improved resistance to CO poisoning are observed for the PtRuNi/MWCNTs electrode, which are attributed to the synergetic effect of bifunctional catalysis, three dimension structure, and oxygen functional groups which generated after electrochemical activation treatment on MWCNTs surface. The effect of electrodeposition conditions for the metal complexes on the composition and performance of the alloy nanoparticle clusters is also investigated. The optimized ratios for PtRu and PtRuNi alloy nanoparticle clusters are 8:2 and 8:1:1, respectively, in this experiment condition. The PtRuNi catalyst thus prepared exhibits excellent performance in the direct methanol fuel cells (DMFCs). The enhanced activity of the catalyst is surely throwing some light on the research and development of effective DMFCs catalysts.  相似文献   

2.
Three-dimensional (3D) macroporous Pt (MPPt) with highly open porous walls has been successfully synthesized using the hydrogen bubble dynamic template synthesis and galvanic replacement reaction. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and electrochemical methods were adopted to characterize their structures and properties. The resulting MPPt shows the same morphology as the initial 3D copper. The MPPt modified glassy carbon electrode (MPPt/GCE) exhibits excellent catalytic activity toward methanol oxidation. The present strategy is expected to reduce the cost of the Pt catalyst remarkably.  相似文献   

3.
In this research, nitrogen-doped carbon nanotubes (N-CNT) were prepared through the low-temperature thermal method and used as the support material for the bimetallic catalyst PtRu and Pt nanoparticles. A passive single-cell direct methanol fuel cell (DMFC) was designed and fabricated to investigate and compare the performance of three discrete membrane electrode assemblies (MEA) with carbon black (CB), CNT, and N-CNT as the catalyst support, respectively. Adding N to the structure of CNTs remarkably improves the physical and electrochemical characteristics of the catalyst. More active sites and stronger interaction between support and metal particles lead to the formation of smaller metal clusters and higher surface area as well as superior electrochemical activity. Compared to PtRu/CB and PtRu/CNT, PtRu/N-CNT illustrate 32% and 12% higher surface area, 3 and 1.9 times higher MOR activity, and 62% and 18% higher power output (26.1 mW/cm2), respectively. Moreover, it is revealed that PtRu/N-CNT has long-term stability in the MOR. The research work presented in this paper exhibits the outstanding performance of Pt and PtRu supported on N-CNT in a passive single-cell DMFC.  相似文献   

4.
Improvements on durability and CO tolerance of the electrocatalyst are crucial for widespread commercialization of direct methanol fuel cells (DMFCs). In this work, we describe a new method to stabilize the PtRu electrocatalyst, in which the PtRu nanoparticles are coated by nitrogen doped carbon layer derived from the carbonization of poly(vinyl pyrrolidone). The coated electrocatalyst shows stable electrochemical surface area (ECSA) and methanol oxidation reaction (MOR) activity after 4200 potential cycles from 0.6 V to 1.0 V vs. RHE; while the non-coated and commercial electrocatalyst lose almost 50% of initial ECSA and MOR activity. Meanwhile, the coated electrocatalyst shows twice higher CO tolerance before and after durability test due to the deceleration of the Ru dissolution proved by the XPS measurement after durability test. The mechanism of the stabilization of Ru was the electron delocalization of Ru caused by the carbonization process of PVP, which changes the electronic structure of Ru and makes Ru difficult to be dissolved. The maximum power density of the coated electrocatalyst is 1.7 times higher than that of commercial CB/PtRu, suggesting the coated electrocatalyst is suitable for real DMFC application. The demonstrated method could be easily extended to obtain extraordinary durability of other electrocatalysts.  相似文献   

5.
Highly dispersed Ru/C catalysts are prepared using high viscosity glycerol as a reducing agent and are treated in H2 atmosphere to ensure stability. A PtRu/C catalyst is prepared by an ethylene glycol process based on the pre-formed Ru/C. The catalyst is tested for methanol oxidation reaction at room temperature and is compared with the activity of the as-prepared PtRu/C alloyed catalyst (prepared by co-reduction of Pt and Ru precursors) and commercial PtRu/C from E-TEK. The catalysts are extensively characterized by Transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Electrochemical measurements by cyclic voltammetry (CV) showed consistently high catalytic activities and improved CO resistance for the PtRu/C catalyst.  相似文献   

6.
Pt-Ru/C catalyst (12 wt%) was prepared by the incipient wetness impregnation method followed by a redox heat-treatment. Transmission electron microscopy (TEM) results revealed uniformly distributed metallic crystallites of Pt-Ru alloy nanoparticles (dPtRu = 2.1 ± 1.0 nm). The effect of redox treatments of the impregnated catalysts on methanol oxidation reaction (MOR) was examined by cyclic voltammetry (CV). The MOR activity of the PtRu/C was significantly improved after each oxidation step of the redox treatment cycles. The enhanced catalytic activity was found to be quite stable in chronoamperometry (CA) measurements. CV, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) results strongly suggested that the improved catalytic activity was due to the formation of a stable c-RuOx (x = 2-3) domain during the oxidation treatments. A bifunctional based mechanism was proposed for the MOR on the oxidized PtRu/C catalysts. Formation of Ru-OH species on the surface of c-RuOx domains was suggested as stale sites for the oxidation of carbon monoxide adsorbed on the Pt catalytic sites.  相似文献   

7.
Platinum decorated Ru/C catalysts are prepared by successive reduction of a platinum precursor on pre-formed Ru/C. Pt:Ru atomic ratios are varied from 0.13:1 to 0.81:1 to investigate the platinum decoration effects on the catalyst's structure and electrochemical performance towards the methanol oxidation reaction (MOR) at room temperature. The catalysts are extensively characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). Ru@Pt/C catalysts show enhanced mass-normalized activity and specific activity for the MOR relative to Pt/C. For the anodic oxidation of methanol, the ratio of forward to reverse oxidation peak current R (If/Ib) varies considerably: R decreases from 5.8 to 0.8 when the Pt:Ru ratio increases from 0.13:1 to 0.81:1. When the ratio of Pt:Ru is 0.42:1, R reaches 0.99 (close to that of Pt/C), and further increase of the Pt:Ru ratio leads to almost no decrease in R. Coincidentally, maximum mass-normalized activity is also obtained when Pt:Ru is 0.42:1.  相似文献   

8.
The support effect of carbon nanotubes (CNTs) for direct methanol fuel cell (DMFC) was studied using CNTs with and without defect preparation, carbon black, and fishbone-type CNTs. The Pt–Ru/defect-free CNTs afforded the highest catalytic activity of methanol oxidation reaction (MOR) in rotating disk electrode experiments and the highest performance as the anode catalysts in DMFC single cell tests with the one-half platinum loading compared to Pt–Ru/VulcanXC-72R. CO stripping voltammograms with Pt–Ru/defect-free CNTs also revealed the lowest CO oxidation potential among other Pt–Ru catalysts using different carbon support. It is thus considered that the carbon substrates significantly affect the CO oxidation activity of anode electrocatalysts in DMFC. This is ascribed to the geometrical effect that the flat interface between CNTs and metal catalysts has a unique feature, at which the electron transfer occurs, and this interface would modify the catalytic properties of Pt–Ru particles.  相似文献   

9.
Highly dispersed nanoparticles (NPs) of Pd and Pd-Ru alloys on the 10 wt% CoWO4-doped GNS (graphene nano sheets) support have been obtained by a microwave-assisted polyol reduction and investigated for their application as efficient electrode materials for methanol oxidation reaction (MOR). Structural and electrocatalytic surface characterization of hybrid materials were carried out by XRD, TEM, XPS, cyclic voltammetry and chronoamperometry. Pure CoWO4 and CoWO4-doped GNS follow the monoclinic crystal structure and the Pd NPs (6–7 nm) dispersed on CoWO4-doped GNS follow the face-centered cubic crystal structure. It is observed that with the increase of Pd loading from 5 to 20 mg on the support, the onset potential (Eop) for MOR shifts negatively and the MOR current density increases, the magnitude of shift in Eop and increase in the MOR peak current density being the greatest in the case of 15 mg Pd loading. Introduction of Ru from 0.6 to 2.0 mg into 15 mg Pd on the catalyst support, the apparent activity of the active catalyst, 15Pd/10 wt% CoWO4-GNS improved further, the magnitude of improvement, however, being the greatest (≈50%) with 1.0 mg Ru. Thus, novel 15Pd-1.0Ru/10 wt%CoWO4-doped GNS can be a promising electrode material for MOR in alkaline solutions.  相似文献   

10.
The main aim of this study is to investigate the high-temperature electrochemical hydrogen purification (HT-ECHP) performances of graphene nanoplatelet (GNP) support material decorated with platinum (Pt) and platinum-ruthenium (PtRu) nanoparticles prepared by microwave irradiation technique. Prepared catalysts coupled to the phosphoric acid doped polybenzimidazole (PBI) membrane for HT-ECHP application. The structural and electrochemical properties of the catalysts were examined by thermogravimetric analysis (TGA), X-Ray Diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Transition electron microscopy (TEM) and cyclic voltammetry (CV) analyses. The characterization results indicate that the catalysts provided the necessary properties for HT-ECHP application. The HT-ECHP performances are investigated with reformate gas mixture containing hydrogen (H2), carbon dioxide (CO2) and carbon monoxide (CO) in the range of 140–180 °C. The results show that the electrochemical purification performances of the catalysts increase with increasing operating temperature. The highest H2 purification performance is obtained with PtRu/GNP catalyst. The high electrochemical H2 purification performance of the PtRu/GNP catalyst can be attributed to the strong synergistic interactions between Pt and Ru particles decorated on the GNP. These results advocate that the PtRu/GNP catalyst is a hopeful catalyst for HT-ECHP application.  相似文献   

11.
The development of efficient and durable bifunctional catalysts for oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is desirable but remains a great challenge. Herein, a series of new three-dimensional (3D) nitrogen, phosphorus and sulfur doped porous graphene (NPS G) were fabricated by facile and cost-effective strategy, as efficient bifunctional electrocatalysts for direct methanol fuel cell. To obtain superior ORR and MOR bifunctional catalytic activities, we optimized the doping amount of nitrogen, phosphorus and sulfur in catalysts. The resulting metal-free NPS G2 catalyst had a long-term stability, desirable four electron pathway and excellent methanol poisoning tolerance. Moreover, NPS G2 exhibited higher onset potential compared to other metal-free NPS G, and close to commerical Pt/C catalyst current density under the same conditions. In addition, a series of NPS G used as good supports for Pt nanoparticles. Pt/NPS G2 catalyst displayed remarkable electrochemical performance, better cyclic stability and tolerance in methanol electrooxidation reaction.  相似文献   

12.
A high surface macroporous porous carbon (MPC) has been obtained by SiO2 nanoparticles template and further used as support for PtRu catalysts. MPC supported PtRu materials show an enhanced activity for methanol electrooxidation when compared with commercial catalysts. This observation is discussed in terms of reactant accessibility to active sites. The improved diffusion through the porous matrix influences not only methanol feeding, but also removal of reaction subproducts, as clearly shown by differential electrochemical mass spectrometry (DEMS).  相似文献   

13.
The development of highly efficient catalysts using inexpensive and earth-abundant metals is a crucial factor in a large-scale commercialization of direct methanol fuel cells (DMFCs). In this study, we explored a new catalyst based on copper nanodendrites (CuNDs) supported on carbon nanofibers/poly (para-phenylenediamine) (CNF/PpPD) nanocomposite for methanol oxidation reaction (MOR). The catalyst support was prepared on a carbon paste electrode by electropolymerization of para-phenylenediamine monomer on a drop-cast carbon nanofibers network. Afterwards, CuNDs were electrodeposited on the nanocomposite through a potentiostatic method. The morphology and the structure of the prepared nanomaterials were characterized by transmission electron microscope, scanning electron microscope, energy dispersive X-ray, X-ray diffraction, and X-ray photoelectron spectroscope. The results suggested that a three-dimensional nanodendritic structure consisting of Cu2O and Cu(OH)2 formed on the hybrid CNF/PpPD nanocomposite. The catalytic performance of CuNDs supported on CNF, PpPD and CNF/PpPD was evaluated for MOR under alkaline conditions. The CNF/PpPD/CuNDs exhibits a highest activity (50 mA cm?2) and stability toward MOR over 6 h, with respect to CNF/CuNDs (40 mA cm?2) and PpPD/CuNDs (36 mA cm?2). This inexpensive catalyst with high catalytic activity and stability is a promising anode catalyst for alkaline DMFC applications.  相似文献   

14.
PtRu catalysts with similar particle size and composition were deposited on three different carbon supports: Vulcan, graphitized carbon nanofibers (GNF) and few-walled carbon nanotubes (FWCNT) and their performance for methanol oxidation was studied in an electrochemical cell and in a single cell DMFC. The electrochemical results indicate that with PtRu/GNF and PtRu/FWCNT higher current densities are obtained and oxidation intermediates deactivate the surface less compared to the same catalyst on Vulcan support. Conversely, PtRu/Vulcan provided the highest open circuit voltage OCV and current densities in DMFC experiments due to a well-optimized electrode layer structure. Because stability is a key requirement for fuel cell commercialization, 6-day-long fuel cell stability tests were carried out, showing that PtRu/Vulcan degraded significantly. This was due to the collapse of the secondary structure of the electrode layer revealed by post characterization of the membrane electrode assembly (MEA) with SEM and TEM. PtRu/GNF exhibited slightly poorer initial performance but better stability because the structure of the anode layer was maintained. PtRu/FWCNT showed the worst initial performance and long-term stability. The good stability of non-optimized PtRu/GNF MEAs shows the potential of these novel nanocarbon supported catalysts as stable fuel cell components after proper MEA optimization.  相似文献   

15.
This study addresses the facile preparation of electro-active Ru–Pt binary nanocatalyst layer electrodeposited onto glassy carbon (GC) electrodes for efficient methanol electrooxidation reaction (MOR). Unmodified GC and GC electrodes modified with Nafion (Naf/GC) and zeolite (Naf-Zeo/GC) are used as substrates for the electrodeposition of the Ru–Pt binary catalyst. Morphological, compositional, crystallographic and electrochemical characterizations were disclosed using scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) unit, XRD, and cyclic voltammetry (CV), respectively. The electrocatalytic activity of the various modified GC electrodes towards MOR depends markedly on the structure of the catalyst layer and the pretreatment of the underlying GC substrate as well. The highest catalytic activity was obtained at Ru–Pt/Naf-Zeo/GC electrode as demonstrated in highest peak current and favorable negative shift of the onset potential of MOR. The underlying zeolite increases the tolerance of the Ru–Pt catalyst layer against CO poisoning possibly by facilitating its oxidative removal and thus retrieval of Pt active sites.  相似文献   

16.
NiMn composite catalysts (C/NiMn, C/NiMnZn, C/NiMnZn–PtRu and C/NiMnZn–PtPd) have been prepared on the graphite substrate (C) by electrochemical deposition as electrocatalytic materials for hydrogen evolution reaction (HER). The NiMnZn coatings were etched in a concentrated alkaline solution (30% NaOH) to produce a porous and electrocatalytic surface suitable for the HER. After the leaching process, a low amount of binary PtPd and PtRu were deposited onto the etched NiMnZn deposit in order to improve the catalytic activity for the HER. Surface morphology and composition of the catalysts were analyzed by scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDX).  相似文献   

17.
Functionalized carbonaceous materials have been investigated as supports of PtRu nanoparticles for the electrooxidation of methanol, using such conventional electrochemical methods as cyclic voltammetry and chronoamperommetry and by measurements in a CH3OH/O2-fed single cell. Further, to understand the effect of oxygen-containing groups on the supports in the methanol oxidation reaction (MOR), a kinetic study of the catalyst that has the best behavior in this process has been performed. The study at different temperatures of PtRu nanoparticles supported in multiwall carbon nanotubes (MWCNTs) with a high amounts of functional groups—PtRuCNT-ST—show that there was low CO poisoning during the MOR on this catalyst. The low apparent energy on PtRuCNT-ST in the MOR was attributed to CO diffusion or to the dissociative adsorption of methanol. Both factors had a beneficial effect on the oxygen-containing groups on MWCNTs, facilitating oxidation of the carbonaceous intermediates to CO2 or HCOOH. These findings have been confirmed by studies in a single cell feeding with CH3OH/O2, demonstrating that PtRuCNT-ST is the best-performing anodic electrode.  相似文献   

18.
The roles of Ru and Sn in mesoporous PtRu and PtRuSn alloys for ethanol electrooxidation reaction were investigated. The catalyst samples were prepared via co-reduction of metal precursors in an aqueous domain of lyotropic liquid crystalline phase of a nonionic surfactant. The crystallite sizes, obtained from x-ray diffractograms of mesoporous PtRu and PtRuSn catalysts, were approximately the same at 3.6 nm. There was a good agreement between the measured lattice parameter and the one calculated from a modification of Vegard's Law suggesting that the ternary PtRuSn alloy had formed. From XPS analysis, the surface species of Ru in both catalysts is in metallic form while Sn in PtRuSn is in SnO phase. The electrochemical measurements in ethanol solution revealed that PtRuSn had exhibited a lower onset potential by about 0.1 V, and also produced a significantly higher oxidation current density than had PtRu. In addition, the chronoamperometry tests demonstrated a lower poisoning rate for ethanol oxidation on the PtRuSn surface at the low potential of 0.3 V vs RHE. However, the adsorbed poisoning species had been effectively oxidized from the surface of PtRu, and consequently shown to be the most poison-tolerant catalyst at a high potential of 0.6 V and a high temperature (60 °C). As a result, Ru and Sn addition exhibited different promotional effects for ethanol oxidation. The addition of Sn promoted dissociative adsorption of ethanol molecules, while the addition of Ru activated the water molecules, which was followed by the oxidation of the strongly adsorbed CO. The added Ru and Sn had enhanced the overall ethanol oxidation on the PtRuSn catalyst.  相似文献   

19.
We report a simple one-step chemical reduction strategy in deep eutectic solvents (DESs) for the fabrication of a PtV alloy nanonetwork (ANN)/multiwalled carbon nanotube (MWCNT) nanohybrid, which exhibits excellent electrocatalytic performance in both activity and stability for the methanol oxidation reaction (MOR). The as-synthesized nanohybrid was characterized by X-ray diffraction, transmission electron microscopy and X-ray photoelectron spectroscopy, confirming the formation of a porous nanonetwork structure composed of smaller PtV alloy nanoparticles (~3.8 nm) and the presence of strong electronic transfer interactions between Pt and alloyed V. The electrochemical properties of catalysts for the MOR were evaluated by using cyclic voltammetry and chronoamperometry techniques. The electrocatalytic activity, durability and CO tolerance ability of PtV ANNs/MWCNTs toward the MOR are found to be considerably higher than those of the Pt/MWCNT and commercial Pt/C catalysts. This investigation of the effect of several reaction parameters (e.g., scan rate and methanol concentration) indicates that the electrocatalytic oxidation of methanol on PtV ANNs/MWCNTs is a diffusion-controlled electrochemical process. The performance enhancement mechanism of MOR on the PtV ANN/MWCNT catalyst is analyzed based on the structure and electrochemical studies.  相似文献   

20.
This research aims at enhancement of the performance of anodic catalysts for the direct ethanol fuel cell (DEFC). Two distinct DEFC nanoparticle electrocatalysts, PtRuMo/C and PtRu/C, were prepared and characterized, and one glassy carbon working electrode for each was employed to evaluate the catalytic performance. The cyclic-voltammetric, chronoamperometric, and amperometric current–time measurements were done in the solution 0.5 mol L−1 CH3CH2OH and 0.5 mol L−1 H2SO4. The composition, particle sizes, lattice parameters, morphology, and the oxidation states of the metals on nanoparticle catalyst surfaces were determined by energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), transmission electron micrographs (TEM) and X-ray photoelectron spectrometer (XPS), respectively. The results of XRD analysis showed that both PtRuMo/C and PtRu/C had a face-centered cubic (fcc) structure with smaller lattice parameters than that of pure platinum. The typical particle sizes were only about 2.5 nm. Both electrodes showed essentially the same onset potential as shown in the CV for ethanol electrooxidation. Despite their comparable active specific areas, PtRuMo/C was superior to PtRu/C in respect of the catalytic activity, durability and CO-tolerance. The effect of Mo in the PtRuMo/C nanoparticle catalyst was illustrated with a bifunctional mechanism, hydrogen-spillover effect and the modification on the Pt electronic states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号