首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Thermal management is one of the key factors required to ensure good performance polymer electrolyte fuel cell (PEFC) stacks. The choice of the thermal management strategy depends on the specific application, size, weight, design, complexity, and cost. In this work, we investigate various alternative thermal management strategies for PEFC stacks, e.g., forced convection in specially design cooling plate/channel with either (i) liquid or (ii) air as the coolant; (iii) edge-air cooling with fins and; combine oxidant and coolant flow (open-cathode) with (iv) forced and (v) natural convection air cooling. A three-dimensional two-phase model, comprising of the equations of conservation of mass, momentum, species, energy and charge, is employed to quantify the performance of various cooling strategies. The results demonstrate that thermal management is essential to ensure good stack performance. Liquid cooling, as expected, performs the best compared to air cooling, whereas natural convection cooling is just marginally able to maintain a stack with large number of cells from steep drop in performance. Finally, results presented in this paper can provide useful design guidelines for selection of a suitable thermal management strategy for a PEFC stack and its near-to- or optimum cooling condition.  相似文献   

2.
Two novel fuel cell designs attempt to improve efficiency and reduce the balance of plant weight by implementing a square hole through the center of the bipolar plates. Air is forced through the square hole for the purpose of oxygen delivery, water removal, and stack cooling. This study demonstrates, for the two novel designs, a more even temperature distribution and hot spots away from the center of the bipolar plates. This reduces the number and size of components required to effectively run the system, thus reducing the weight of the balance of plant. Four simulations are presented in this paper, with inlet gases and initial cell temperature set to 333 K. The maximum temperature for case 1 without cooling is 347.97 K, case 1 with water cooling is 335.29 K, case 2 with forced air cooling is 339.42 K, and case 3 with forced air cooling is 335.13 K.  相似文献   

3.
4.
Parameter sensitivity analysis is carried out for a complete three-dimensional, two-phase, non-isothermal model of polymer electrolyte membrane (PEM) fuel cell with a parallel flow field design. The model couples the two-phase flow of the multi-component reactants and liquid water, species transport, electrochemical reactions, proton and electron transport, and the electro-osmosis transport, back diffusion of water in the membrane, and energy transport. Twenty nine parameters, which are classified into the structural or transport parameters of porous layers (tortuosity, porosity, permeability, proton conductivity, electron conductivity, and thermal conductivity) as well as the electrochemical parameters (anodic and cathodic exchange current densities, anodic and cathodic transfer coefficients for anode and cathode reactions), are used to implement individual parameter investigation. The results show the parameters can be divided in to strongly sensitive, conditional sensitive and weak sensitive parameters according to its effect on the cell polarization curve. The optimization of parameters of cathode gas diffusion layer (GDL) and catalyst layer (CL) is more important to improve cell performance than that of anode GDL and CL because liquid water transport and removal affect significantly membrane hydration and reactant transport. Electrochemical parameters determine the activation potential and the slope of ohmic polarization hence these parameters can be used to fit experimental polarization curve more effectively than the other parameters.  相似文献   

5.
Flow field design on the cathode side, inspired by leaf shapes, leads to a high performance, as it achieves a good distribution of reactants. Furthermore, the addition of baffles to the cathode channel also increases the supply of reactants in the cathode catalyst. However, research on the addition of baffles to the cathode channel has still been limited to straight channels and conventional flow fields. Therefore, in this work, a numerical study was conducted to investigate the effect of baffles on the leaf flow field on the performance of a polymer electrolyte membrane fuel cell. The generated 3D model is composed of nine layers with a 25-cm2 active area. The beam and chevron shapes of the baffles, which were inserted into the mother channel, were compared. The simulation results revealed that the addition of beam-shaped baffles that are close to each other can increase the current and power densities by up to 18% due to the more uniform distribution of the oxygen mass fraction.  相似文献   

6.
Temperature is an important factor that impacts the performance of polymer electrolyte membrane fuel cells (PEMFCs). Proper cooling systems are indispensable for heat management. Cooling plates with coolant flow channels are mainly used to release the reaction heat in PEMFCs and thus control their operating temperature. In this study, several multi-pass serpentine flow-field (MPSFF) designs are studied in order to achieve better heat management by using cooling plates. Based on computational fluid dynamics (CFD) simulations of fluid flow and heat transfer in the cooling plates, the cooling performance of the six serpentine channel designs is evaluated. The results demonstrate that MPSFFs lead to better cooling performance compared with a conventional serpentine flow-field, in terms of both the maximum temperature and temperature uniformity. The effect of the Reynolds number and heat flux on the cooling performance exhibited by the six designs is also investigated.  相似文献   

7.
8.
A transient, one-dimensional thermal model for a generic polymer electrolyte fuel cell (PEFC) stack is developed to investigate the cold-start ability and the corresponding energy requirement over different operating and ambient conditions. The model is constructed by applying the conservation of energy on each stack component and connecting the component's relevant boundaries to form a continuous thermal model. The phase change of ice and re-circulation of coolant flow are included in the analytical framework and their contribution to the stack thermal mass and temperature distribution of the components is also explored. A parametric study was conducted to determine the governing parameters, relative impact of the thermal mass of each stack component and ice, and anticipated temperature distribution in the stack at start-up for various operating conditions. Results indicate that 20 cells were sufficient to accurately experimentally and computationally simulate the full size stack behavior. It was observed that an optimum range of operating current density exists for a chosen stack design, in which rapid start-up of the stack from sub-zero condition can be achieved. Thermal isolation of the stack at the end plates is recommended to reduce the start-up time. Additionally, an end plate thickness exceeding a threshold value has no added effect on the stack cold-start ability. Effect of various internal and external heating mechanisms on the stack start-up were also investigated, and flow of heated coolant above 0 °C was found to be the most effective way to achieve the rapid start-up.  相似文献   

9.
A review of polymer electrolyte membrane fuel cell stack testing   总被引:2,自引:0,他引:2  
This paper presents an overview of polymer electrolyte membrane fuel cell (PEMFC) stack testing. Stack testing is critical for evaluating and demonstrating the viability and durability required for commercial applications. Single cell performance cannot be employed alone to fully derive the expected performance of PEMFC stacks, due to the non-uniformity in potential, temperature, and reactant and product flow distributions observed in stacks. In this paper, we provide a comprehensive review of the state-of-the art in PEMFC testing. We discuss the main topics of investigation, including single cell vs. stack-level performance, cell voltage uniformity, influence of operating conditions, durability and degradation, dynamic operation, and stack demonstrations. We also present opportunities for future work, including the need to verify the impact of stack size and cell voltage uniformity on performance, determine operating conditions for achieving a balance between electrical efficiency and flooding/dry-out, meet lifetime requirements through endurance testing, and develop a stronger understanding of degradation.  相似文献   

10.
Understanding the thermal properties of the microporous layer (MPL) is critical for accurate thermal analysis and improving the performance of proton exchange membrane (PEM) fuel cells operating at high current densities. In this study, the effective through-plane thermal conductivity and contact resistance of the MPL have been investigated. Gas diffusion layer (GDL) samples, coated with 5%-wt. PTFE, with and without an MPL are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Effective thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15 bar at 0.30 W/m°K and 55 μm, respectively. The effective thermal conductivity of the GDL substrate containing 5%-wt. PTFE varied from 0.30 to 0.56 W/m°K as compression was increased from 4 to 15 bar. As a result, GDL containing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL.  相似文献   

11.
A new application of in-fibre Bragg grating (FBG) sensors for the distributed measurement of temperature inside a polymer electrolyte membrane fuel cell is demonstrated. Four FBGs were installed on the lands between the flow channels in the cathode collector plate of a single test cell, evenly spaced from inlet to outlet. In situ calibration of the FBG sensors against a co-located micro-thermocouple shows a linear, non-hysteretic response, with sensitivities in good agreement with the expected value. A relative error of less than 0.2 ° C over the operating range of the test cell (∼20-80 °C) was achieved, offering sufficient resolution to measure small gradients between sensors. While operating the fuel cell at higher current densities under co-flow conditions, gradients of more than 1 ° C were measured between the inlet and outlet sensors. Due to their small thermal mass, the sensors also exhibit good temporal response to dynamic loading when compared with the thermocouple. Design and instrumentation of the graphite collector plate features minimal intrusion by the sensors and easy adaptation of the techniques to bipolar plates for stack implementation.  相似文献   

12.
A polymer electrolyte membrane fuel cell (PEMFC) system is developed to power a notebook computer. The system consists of a compact methanol-reforming system with a CO preferential oxidation unit, a 16-cell PEMFC stack, and a control unit for the management of the system with a d.c.–d.c. converter. The compact fuel-processor system (260 cm3) generates about 1.2 L min−1 of reformate, which corresponds to 35 We, with a low CO concentration (<30 ppm, typically 0 ppm), and is thus proven to be capable of being targetted at notebook computers.  相似文献   

13.
A novel method of water management of polymer electrolyte membrane (PEM) fuel cells using intermittent humidification is presented in this study. The goal is to maintain the membrane close to full humidification, while eliminating channel flooding. The entire cycle is divided into four stages: saturation and de-saturation of the gas diffusion layer followed by de-hydration and hydration of membrane. By controlling the duration of dry and humid flows, it is shown that the cell voltage can be maintained within a narrow band. The technique is applied on experimental test cells using both plain and hydrophobic materials for the gas diffusion layer and an improvement in performance as compared to steady humidification is demonstrated. Duration of dry and humid flows is determined experimentally for several operating conditions.  相似文献   

14.
In the present study, a short circuit controller for use in the humidification of polymer electrolyte membrane fuel cells was developed for unmanned aerial vehicles (UAVs). Fuel cells (FCs) require an external humidifier to avoid drying up. Particularly in UAV applications, humidity control is more important because the boiling point of water decreases with increase in flight altitude. In this study, overcurrent was generated by short-circuiting an FC to humidify the electrolyte membrane and improve the electric power output. An FC controller incorporating a short circuit unit was developed, and a battery was hybridized with the FC to compensate the power when the latter was short-circuited. The performance of the FC was evaluated for the interval (period) and duration of short circuit. Using this method, the power output was improved by 16% when short circuit control was operated at the optimal condition.  相似文献   

15.
The role of cathodic cover opening ratio on water management was investigated for micro air-breathing polymer electrolyte membrane fuel cells (PEMFCs). The results demonstrate the possibility to manage water content in micro-PEMFC using cover opening ratio variation. By measuring the internal resistance of a cell in various cover configurations (0.33 Ω cm2 to 4.0 Ω cm2), the influence of cover opening ratio on water management was shown. Indeed, for a cell situated in a 10% relative humidity atmosphere and operated at 0.5 V, the addition of a 5% opening ratio cover allowed to reach similar current densities (270 mA cm−2) to those recorded for the same potential at 70% relative humidity without cover. Although the starting current density for a cell operated at 60 °C without gas humidification was extremely low (15 mA cm−2), the total closure of the cover allowed to maintain the water produced and accumulated by the cell at the cathode, and current density of 800 mA cm−2 were reached after height minutes of operation. The influence of the opening ratio on back-diffused water was also evaluated and the maximum of back-diffused water was observed for a cell operated with a 5% cover opening ratio and represented 33% of the total water product at 150 mA cm−2.A new method of anodic water evacuation, which does not increase the cell volume and which does not require any control tool was carried out and experimentally evaluated.  相似文献   

16.
The role of cathodic structure on water management was investigated for planar micro-air-breathing polymer electrolyte membrane fuel cells (PEMFCs). The electrical results demonstrate the possibility to decrease, with the same structure, both cell drying and cell flooding according to the environmental and operation conditions. Thanks to a simultaneous study of internal resistance and scanning electronic microscope (SEM) images, we demonstrate the advantageous influence of the presence of crack in cathodic catalytic layer on water management. On the one hand, the gold layer used as cathodic current collector is in contact with the electrolyte in the cracked zones which allows water maintenance within the electrolyte. It allows to decrease the cell drying and thus strongly increase the electrical performances. For cells operated in a 10% relative humidity atmosphere at 30 °C and at a potential of 0.5 V, the current density increases from 28 mA cm−2 to 188 mA cm−2 (+570%) for the cell with a cathodic cracked network. On the other hand, the reduction in oxygen barrier diffusion due to the cathodic cracks allows to improve oxygen diffusion. In flooding state, the current densities were higher for a cell with a cracked network. For cells operating in a 70% relative humidity atmosphere at 30 °C and at a potential of 0.2 V, a current density increase from 394 mA cm−2 to 456 mA cm−2 (16%) was noted for the cell with a cathodic cracked network. Microscopic observations allowed us to visualize water droplets growth mechanism in cathodic cracks. It was observed that the water comes out of the crack sides and partially saturates the cracks before emerging on cathodic collector. These results demonstrate that cathode structuration is a key parameter that plays a major role in the water management of PEMFCs.  相似文献   

17.
A free vibration analysis of a polymer electrolyte membrane fuel cell (PEMFC) is performed by modelling the PEMFC as a 20 cm × 20 cm composite plate structure. The membrane, gas diffusion electrodes, and bi-polar plates are modelled as composite material plies. Energy equations are derived based on Mindlin's plate theory, and natural frequencies and mode shapes of the PEMFC are calculated using finite element modelling. A parametric study is conducted to investigate how the natural frequency varies as a function of thickness, Young's modulus, and density for each component layer. It is observed that increasing the thickness of the bi-polar plates has the most significant effect on the lowest natural frequency, with a 25% increase in thickness resulting in a 17% increase in the natural frequency. The mode shapes of the PEMFC provide insight into the maximum displacement exhibited as well as the stresses experienced by the single cell under vibration conditions that should be considered for transportation and stationary applications. This work provides insight into how the natural frequencies of the PEMFC should be tuned to avoid high amplitude oscillations by modifying the material and geometric properties of individual components.  相似文献   

18.
A catalyst-coated membrane (CCM) as used in the membrane electrode assembly (MEA) of a polymer electrolyte membrane fuel cell is treated by dilute sulfuric acid solution (0.5 M) at boiling temperature for 1 h. This treatment improves the single-cell performance of the CCM without further addition of Pt catalyst. The changed microstructure and electrochemical properties of the catalyst layer are investigated by field emission scanning electron microscopy with energy dispersive X-ray, mercury intrusion porosimetry, waterdrop contact angle measurement, Fourier transform-infrared spectrometry in attenuated total reflection mode, electrochemical impedance spectroscopy, and cyclic voltammetry. The results indicate that this pretreatment enhances MEA performance by changing the microstructure of the catalyst layer and thus changing the degree of hydration, and by modifying the Pt surface, thus enhancing the oxygen reduction reaction.  相似文献   

19.
A mathematical formulation for the cathode of a membrane electrode assembly of a polymer electrolyte membrane fuel cell is proposed, in which the effect of unsaturated vapor feed in the cathode is considered. This mechanistic model formulates the water saturation front within the gas diffusion layer with an explicit analytical expression as a function of operating conditions. The multi-phase flows of gaseous species and liquid water are correlated with the established capillary pressure equilibrium in the medium. In addition, less than fully hydrated water contents in the polymer electrolyte and catalyst layers are considered, and are integrated with the relevant liquid and vapor transfers in the gas diffusion layer. The developed performance equations take into account the influences of all pertinent material properties on cell performance using first principles. The mathematical approach is logical and concise in terms of revealing the underlying physical significance in comparison with many other empirical data fitting models.  相似文献   

20.
Air delivery is typically the greatest parasitic power loss in polymer electrolyte membrane fuel cell (PEMFC) systems. We here present a detailed study of an active water management system for PEMFCs, which uses a hydrophilic, porous cathode flow field, and an electroosmotic (EO) pump for water removal. This active pumping of liquid water allows for stable operation with relatively low air flow rates and low air pressure and parallel cathode channel architectures. We characterize in-plane transport issues and power distributions using a three by three segmented PEMFC design. Our transient and steady state data provide insight into the dynamics and spatial distribution of flooding and flood-recovery processes. Segment-specific polarization curves reveal that the combination of a wick and an EO pump can effect a steady state, uniform current distribution for a parallel channel cathode flow field, even at low air stoichiometries (αair = 1.5). The segmented cell measurements also reveal the mechanisms and dynamics associated with EO pump based recovery from catastrophic flooding. For most operating regimes, the EO pump requires less than 1% of the fuel cell power to recover from near-catastrophic flooding, prevent flooding, and extend the current density operation range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号