首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 625 毫秒
1.
基于奇异值分解的图像目标跟踪算法   总被引:1,自引:0,他引:1  
传统相关跟踪方法是利用模板图像与目标图像对应像素的灰度差异信息进行跟踪,它对旋转变化敏感,且存在跟踪累积误差,容易导致模板漂移而丢失目标。文中提出基于奇异值分解的跟踪算法,算法首先建立模板图像训练集合,利用奇异值分解方法,张成模板图像特征空间,然后求出模板图像在特征空间里的投影值,代替传统算法中灰度对两幅待匹配图像进行的全局搜索定位。在进行投影值间的相似性度量时,欧氏距离同等对待所有的特征向量不移合理,文中采用了一种鲁棒估计方法,可以对不同距离的值做不同处理。匹配跟踪实验效果良好。  相似文献   

2.
宋亚  樊芮锋  李辉强 《激光与红外》2021,51(10):1352-1356
针对地面光电跟踪系统的误差定位进行了理论分析,确定影响其目标定位精度的误差因素主要是垂直度误差、零位误差、基座安装误差等,给出了光电跟踪系统的标定流程。利用标定过程中坐标变换的顺序特性,通过奇异值分解原理给出了坐标变换的变换矩阵,包括平移矩阵、旋转矩阵及其欧拉角;同时通过标定流程的迭代,确定了固定俯仰偏移角度的大小。最后通过试验验证了此标定流程的准确性。  相似文献   

3.
基于奇异值分解的图像匹配方法   总被引:10,自引:2,他引:10  
传统的图像匹配方法中, 由于实时图和参考图之间存在着灰度差异和几何形变,仅用灰度作为特征进行匹配算法的性能很容易受到影响。文中提出了一种基于奇异值分解的图像匹配方法。该方法首先利用奇异值分解方法,求出模板图像矩阵的奇异值及奇异值向量,用它们作为模板图像的特征代替传统算法中的灰度对两幅待匹配图像进行全局搜索定位。由于奇异分解方法所特有的优越性,匹配实验取得了良好效果。实验结果验证了该方法的有效性。  相似文献   

4.
一种基于奇异值分解的特征抽取方法   总被引:7,自引:0,他引:7       下载免费PDF全文
特征抽取是模式识别的基本问题之一,Fisher线性鉴别分析是特征抽取中最为经典和广泛使用的方法之一。该文分析了Fisher线性鉴别分析在求解过程中可能存在的问题:鉴别矢量的分量可能是复数;特征值对扰动的敏感性;鉴别矢量之间未必具有正交性。由此提出了均衡散布矩阵的概念,并利用均衡散布矩阵构造了一种新的线性鉴别准则。利用奇异值分解定理,将求取鉴别矢量转化为对矩阵求奇异向量。用该方法进行求解可以有效地避免前述的问题。试验结果表明,该鉴别准则具有良好的鉴别能力。  相似文献   

5.
基于奇异值分解的图像去噪   总被引:3,自引:0,他引:3  
提出了利用奇异值分解去除图像噪声的方法。从矩阵的角度出发,通过对图像矩阵进行奇异值分解,将包含图像信息的矩阵分解到一系列奇异值和奇异值矢量对应的子空间中,然后通过有效奇异值重构图像矩阵达到去噪目的。试验利用MATLAB通过对MRI(核磁共振)医学图像进行去噪处理,验证了奇异值分解的去噪效果,并且通过对多幅图像的试验结果进行分析,得到了去噪重构图像时所需有效奇异值数目的统计值。  相似文献   

6.
基于奇异值分解的数字图像水印方法   总被引:137,自引:6,他引:137       下载免费PDF全文
刘瑞祯  谭铁牛 《电子学报》2001,29(2):168-171
随着计算机和网络技术的飞速发展,数字图像、音频和视频产品愈来愈需要一种有效的版权保护方法,另外通信系统在网络环境下的信息安全问题也日益显露出来.数字图像水印技术为上述问题提供了一个潜在的解决方案.所谓水印技术就是将数字、序列号、文字、图像标志等版权信息嵌入到多媒体数据中,以起到版权保护、秘密通信、数据文件的真伪鉴别和产品标志等作用.本文提出了一种新的基于奇异值分解的数字水印算法并且对该方法的理论基础给出分析.实验结果表明这种方法要比目前提出的流行算法鲁棒.  相似文献   

7.
针对奇异值分解变换在对图像进行压缩时,其压缩比是动态可调的,从而提出了一种新的方法,在图像压缩过程中能自适应的寻找最佳压缩比。文章引入能量差Q的概念,利用Q与奇异值个数q之间的关系,通过确定合适的Q值,动态寻找最佳的q值,从而达到动态图像压缩的目的。经过对多幅灰度图像的压缩实验证明,该方法切实可行,具有一定的应用前景。  相似文献   

8.
研究了基于奇异值分解的图像匹配和目标跟踪问题。由于图像的奇异值特征具有良好的稳定性,可以将奇异值当作一种有效的代数特征来描述并表征图像。根据所定义的奇异值缩放不变量提出了一种基于奇异值分解的模板更新算法。在算法中,根据奇异值向量的缩放不变特征来度量当前模板内的目标信息,然后根据所定义的置信度自动计算更新后所需的模板大小,从而使更新后的模板更有效地包含目标。试验表明:提出的模板更新算法在序列图像的目标跟踪中具有较好的实用性。  相似文献   

9.
基于EMD和奇异值分解的心律失常分类方法   总被引:1,自引:0,他引:1  
基于经验模态分解(Empirical Mode Decomposition,简称EMD)和奇异值分解(Singular Value Decomposition,简称SVD)理论,提出一种新的心律失常类型分类方法.首先,利用经验模态分解方法自适应地将心电信号(ECG)分解为一组固有模态函数(Intrinsic Mode Function,简称IMF)和一个残余分量,解决了目前广泛应用的小波分解方法中小波基选取困难以及分解结果不唯一的难题.利用这组固有模态函数构造初始特征向量矩阵,对初始特征向量矩阵进行奇异值分解,得到矩阵的奇异值.奇异值是矩阵的固有特征,具有较好的稳定性,根据奇异值计算奇异熵.最后依据奇异熵和马氏距离判别函数对心电信号的心律失常类型进行分类.实验结果表明,本方法能方便有效地对心律失常类型进行识别判断,可用于心电信号病理辅助诊断领域.  相似文献   

10.
由于奇异值分解可以有效地提取图像的主要特征,为了提高算法的鲁棒性,通过将矩阵的奇异值分解引入振幅-相位恢复算法,提出了基于奇异值分解的抗噪声多强度相位恢复算法。首先,将奇异值分解引入振幅-相位恢复算法,在振幅-相位恢复算法取平均值之后,对恢复的图像进行奇异值分解,奇异值较小的分量认为是噪声,保留奇异值较大的分量,将奇异值较小的分量置为0。其次,通过数值模拟实验可以看出,通过奇异值分解,不仅可以去除测量过程中所引入的噪声,而且还可以充分利用自然图像稀疏的特性,加快振幅-相位恢复算法的收敛,且具有更少的算法运行时间。  相似文献   

11.
Saliency detection has gained popularity in many applications, and many different approaches have been proposed. In this paper, we propose a new approach based on singular value decomposition (SVD) for saliency detection. Our algorithm considers both the human-perception mechanism and the relationship between the singular values of an image decomposed by SVD and its salient regions. The key concept of our proposed algorithms is based on the fact that salient regions are the important parts of an image. The singular values of an image are divided into three groups: large, intermediate, and small singular values. We propose the hypotheses that the large singular values mainly contain information about the non-salient background and slight information about the salient regions, while the intermediate singular values contain most or even all of the saliency information. The small singular values contain little or even none of the saliency information. These hypotheses are validated by experiments. By regularization based on the average information, regularization using the leading largest singular values or regularization based on machine learning, the salient regions will become more conspicuous. In our proposed approach, learning-based methods are proposed to improve the accuracy of detecting salient regions in images. Gaussian filters are also employed to enhance the saliency information. Experimental results prove that our methods based on SVD achieve superior performance compared to other state-of-the-art methods for human-eye fixations, as well as salient-object detection, in terms of the area under the receiver operating characteristic (ROC) curve (AUC) score, the linear correlation coefficient (CC) score, the normalized scan-path saliency (NSS) score, the F-measure score, and visual quality.  相似文献   

12.
基于SVD的小波变换图像去噪方法   总被引:1,自引:0,他引:1  
黄影  廖斌 《数字通信》2009,36(3):87-89
针对传统SVD图像去噪方法的不足,提出了一种基于SVD分解的小波分解图像去噪方法。通过对小波变换的系数矩阵进行奇异值分解,将其中的信号特征成分和噪声分解到不同的正交子空间中,在子空间中选取集成信号特征成分的奇异值矢量进行重构,从而提取出淹没在噪声中的信号成分。实验结果表明该文提出的方法适用于图像信号的提取,与传统的SVD去噪方法相比,它提取出的信号特征成分更完整,信噪比更高。  相似文献   

13.
基于高维张量奇异值分解的图像加密   总被引:2,自引:0,他引:2       下载免费PDF全文
现有基于奇异值分解(SVD)的彩色信息加密系统提供了一种光学矩阵分解方案、安全的密文和敏感的密钥。高维张量奇异值分解(HOSVD)是SVD矩阵的自然线性延伸,提出了一种基于HOSVD的彩色图像加密算法。在加密过程中,HOSVD比SVD提供了更多的密文乘法组合次序。这些乘法组合次序可以有效地增加未经授权的解密难度。在解密过程中,HOSVD的重建精度比SVD更高。这些优点提高了准确性、安全性和鲁棒性。通过对100个图像测试数据集的计算机仿真验证了该算法的可行性。  相似文献   

14.
15.
We describe a new no-reference blur index for still images based on a singular value curve (SVC). The algorithm is composed of two steps. First, the singular value decomposition is performed on the image to be blur-assessed. Then an image blur index is constructed from the singular value curve. Experimental results obtained on four simulated blur databases and on the Real Blur Image Database show that the proposed SVC algorithm achieves high correlation against human judgments when assessing the blur distortion of images.  相似文献   

16.
针对常见证据冲突度量方法适应性差、准确性低的问题,提出了一种基于Pignistic概率转换和奇异值分解的证据冲突度量方法。首先通过Pignistic概率转换将证据焦元差异映射到信度差异上,构建证据复合信任函数矩阵。然后采用奇异值分解的方法提取矩阵特征,根据奇异值特性将矩阵特征空间划分为相似子空间和冲突子空间,综合考虑证据矩阵相似特性和冲突特性,将冲突子空间奇异值与相似子空间奇异值之比作为新的冲突度量因子。最后在全冲突场景、变信度场景、变焦元场景、焦元嵌套场景等多种证据冲突场景下将所提方法与常见方法进行了对比分析,结果表明所提方法具有适应性广、准确性高、稳定性好的特点。  相似文献   

17.
提出了一种多分辨奇异值分解(MSVD)的新框架,并把它应用于多聚焦图像融合中.首先,基于分块算法原理,利用奇异值分解获得具有不同分辨率的一幅近似和三幅细节图像.然后结合重构算法,给出了图像的融合框架.其次,对比基于离散小波变换(DWT)的融合算法,基于MSVD的融合效果更好,而且 MSVD的基向量只依赖于图像本身而不像小波需要固定的基.最后,采用客观性能指标对结果图像进行评价.实验结果表明,本文的方法不仅简单易行,而且图像表现出良好的视觉效果,清晰度和空间频率都有很大提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号