首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Desensitization is an important characteristic of glutamate receptors of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) type. 2. Stimulation of N-methyl-D-aspartate (NMDA) or AMPA receptors in cerebellum results in increased production of cyclic GMP. We have investigated AMPA receptor desensitization in vivo by monitoring extracellular cyclic GMP during intracerebellar microdialysis in conscious unrestrained adult rats. 3. Local infusion of AMPA (10 to 100 microM) caused dose-related elevations of cyclic GMP levels. The effect of AMPA was prevented by the non-NMDA receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX) and by the nitric oxide (NO) synthase inhibitor NG-nitro-L-arginine (L-NOARG). 4. In the absence of AMPA, DNQX lowered the basal levels of cyclic GMP whereas the NMDA receptor channel antagonist dizocilpine (MK-801) was ineffective. 5. Cyclothiazide, a blocker of AMPA receptor desensitization, potentiated the cyclic GMP response to exogenous AMPA. Moreover, cyclothiazide (100-300 microM) produced on its own dose-dependent elevations of extracellular cyclic GMP. The cyclothiazide-induced response was prevented not only by DNQX but also by MK-801. 6. While the cyclic GMP response elicited by AMPA was totally insensitive to MK-801, the response produced by AMPA (10 microM) plus cyclothiazide (30 microM) was strongly attenuated by the NMDA receptor antagonist (30 microM). 7. The results suggest that (a) AMPA receptors linked to the NO-cyclic GMP pathway in the cerebellum can undergo desensitization in vivo during exposure to exogenous AMPA; cyclothiazide inhibits such desensitization; (b) AMPA receptors (but not NMDA receptors) are 'tonically' activated and kept in a partly desensitized state by endogenous glutamate; (c) if cyclothiazide is present, activation of AMPA receptors may permit endogenous activation of NMDA receptors.  相似文献   

2.
The neuroprotective properties of the N-methyl-D-aspartate (NMDA) antagonist dizocilpine (MK-801) and the non-NMDA antagonists 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f]quinoxaline (NBQX) and alpha-methyl-4-carboxyphenylglycine (MCPG) were evaluated against neuronal injury produced by the intraspinal injection of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). Forty-nine animals were divided into eight groups in order to evaluate the effects of different drug combinations: (a) NMDA; (b) NMDA + MCPG; (c) NMDA + NBQX; (d) NMDA + MK-801; (e) AMPA; (f) AMPA + MCPG; (g) AMPA + MK-801; and (h) AMPA + NBQX. Drugs were microinjected into spinal segments T12-L3 through a micropipette attached to a Hamilton microliter syringe. Spinal cords were evaluated after a survival period of 48 h at which time NMDA and AMPA were found to produce morphological changes over the concentration ranges of 125-500 mM and 75-500 microM, respectively. Neuronal loss following injections of NMDA + MK-801 or AMPA + NBQX was significantly less than that following injections of NMDA or AMPA alone. By contrast, neuronal loss following co-injections of NMDA or AMPA with inappropriate antagonists, i.e., NMDA + NBQX/MCPG or AMPA + MCPG/MK-801, was not significantly different from that produced by NMDA or AMPA. The results suggest that elevations in spinal levels of glutamate followed by prolonged activation of NMDA and AMPA receptor subtypes initiate an excitotoxic cascade resulting in neuronal injury. Blockade of NMDA and AMPA effects by MK-801 and NBQX respectively confirms the well documented neuroprotective effects of these drugs and lends support to the potential importance of NMDA and especially AMPA receptor antagonists as therapeutic agents in the treatment of acute spinal cord injury.  相似文献   

3.
This study investigated the putative role of non-NMDA excitatory amino acid (EAA) receptors in the ventral tegmental area (VTA) for the increase in dopamine (DA) release in the nucleus accumbens (NAC) and behavioral stimulation induced by systemically administered dizocilpine (MK-801). Microdialysis was utilized in freely moving rats implanted with probes in the VTA and NAC. Dialysates from the NAC were analyzed with high-performance liquid chromatography for DA and its metabolites. The VTA was perfused with the AMPA and kainate receptor antagonist CNQX (0.3 or 1 mM) or vehicle. Forty min after onset of CNQX or vehicle perfusion of the VTA, MK-801 (0.1 mg/kg) was injected subcutaneously. Subsequently, typical MK-801 induced behaviors were also assessed in the same animals by direct observation. MK-801 induced hyperlocomotion was associated with a 50% increase of DA levels in NAC dialysates. Both the MK-801 evoked hyperlocomotion and DA release in the NAC was antagonized by CNQX perfusion of the VTA in a concentration-dependent manner. None of the other rated MK-801 evoked behaviors, e.g. head weaving or sniffing, were affected by CNQX perfusion of the VTA. By itself the CNQX or vehicle perfusion of the VTA alone did not affect DA levels in NAC or any of the rated behaviors. These results indicate that MK-801 induced hyperlocomotion and DA release in the NAC are largely elicited within the VTA via activation of non-NMDA EAA receptors, tentatively caused by increased EAA release. Thus, the locomotor stimulation induced by psychotomimetic NMDA receptor antagonists may not only reflect impaired NMDA receptor function, but also enhanced AMPA and/or kainate receptor activation in brain, e.g., in the VTA. In view of their capacity to largely antagonize the behavioral stimulation induced by psychotomimetic drugs, such as MK-801, AMPA, and/or kainate receptor antagonists may possess antipsychotic efficacy.  相似文献   

4.
AIM: To investigate age related alterations in glutamate N-methyl-D-aspartate (NMDA) receptor binding produced by the modulatory compounds glutamate, glycine, and magnesium (Mg2+) sulphate. METHODS: The effects produced by glutamate plus glycine, and Mg2+ on the binding of [3H]MK-801, a ligand for the N-methyl-D-aspartate ion channel phencyclidine site, were measured in membrane preparations made from prefrontal cortex from human neonate (n = 5), infant (n = 6), and adult (n = 6) necropsy brains. RESULTS: Neonatal brains had the least [3H]MK-801 binding, suggesting either a low density of NMDA receptors or a more restricted access of [3H]MK-801 to cation channel sites. Infant brains had the most [3H]MK-801 binding which was stimulated to a greater extent by L-glutamate (100 microM) and glycine (10 microM) than in neonatal and adult brains. MG2+ invariably inhibited [3H]MK-801 binding. However, the Mg2+ IC50 value was higher in neonatal brain (3.6 mM) than infant (1.4 mM) and adult (0.87 mM) brains. CONCLUSION: Infant brain may have excess NMDA receptors which are hyper responsive to glutamate and glycine. The lower potency of Mg2+ to inhibit [3H]MK-801 binding in neonatal cortex may be because newborn babies have NMDA receptors without the normal complement of Mg2+ sites. The findings suggest that therapeutic NMDA receptor block in neonates requires higher concentrations of magnesium sulphate in brain tissue.  相似文献   

5.
Monitoring of extracellular cGMP during intracerebral microdialysis in freely moving rats permits the study of the functional changes occurring in the glutamate receptor/nitric oxide (NO) synthase/guanylyl cyclase pathway and the relationship of these changes to animal behaviour. When infused into the rat hippocampus in Mg2+-free medium, cyclothiazide, a blocker of desensitization of the AMPA-preferring receptor, increased cGMP levels. The effect of cyclothiazide (300 microM) was abolished by the NO synthase inhibitor L-NARG (100 microM) or the soluble guanylyl cyclase inhibitor ODQ (100 microM). During cyclothiazide infusion the animals displayed a pre-convulsive behaviour characterized by frequent "wet dog shakes" (WDS). Neither L-NARG nor ODQ decreased the WDS episodes. Both cGMP and WDS responses elicited by cyclothiazide were prevented by blocking NMDA receptor function with the glutamate site antagonist CGS 19755 (100 microM), the channel antagonist MK-801 (30 microM) or Mg2+ ions (1 mM). The AMPA/kainate receptor antagonists DNQX (100 microM) and NBQX (100 microM) abolished the WDS episodes but could not inhibit the cyclothiazide-evoked cGMP response. DNQX or NBQX (but not MK-801) elevated, on their own, extracellular cGMP levels. The cGMP response elicited by the antagonists appears to be due to prevention of a glutamate-dependent inhibitory GABAergic tone, since infusion of bicuculline (50 microM) caused a strong cGMP response. The results suggest that (a) AMPA/kainate receptors linked to the NO/cGMP pathway in the hippocampus (but not NMDA receptors) are tonically activated and kept in a desensitized state by endogenous glutamate; (b) blockade of AMPA/kainate receptor desensitization by cyclothiazide leads to endogenous activation of NMDA receptors; (c) the hippocampal NO/cGMP system is under a GABAergic inhibitory tone driven by non-NMDA ionotropic receptors; (d) the pre-convulsive episodes observed depend on hippocampal NMDA receptor activation but not on NO and cGMP production.  相似文献   

6.
In the present study, glutamate receptor agonists and antagonists were administered by retrograde microdialysis into either the medial septum/vertical limb of the diagonal band (MS/vDB), or hippocampus, and the output of acetylcholine (ACh) was measured in the hippocampus by using intracerebral microdialysis. Perfusion with N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) in the MS/vDB caused an incrase in ACh output in the hippocampus. This increase was completely blocked by coadministration of their respective antagonists D(-)-2-amino-5-phosphonopentanoic acid (D-AP5) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Perfusion in the MS/vDB with kainic acid also caused an increase in ACh output, but coadministration of CNQX attenuated the increase only partially. Perfusion with D-AP5 and CNQX alone in the septal probe did not affect ACh output from the hippocampus. In contrast to the results of septal administration of NMDA and AMPA, local perfusion with the same drugs in the hippocampus caused a decrease in ACh output. Whereas the results of septal administration of drugs indicate that septal cholinergic neurons probably receive excitatory glutamatergic innervation, the decrease in ACh output caused by administration of NMDA and AMPA in the hippocampus is poorly understood.  相似文献   

7.
Effects of continuous pentobarbital administration on binding characteristics of [3H]MK-801 in the rat brain were examined by autoradiography. Animals were rendered tolerant to pentobarbital using i.c.v. infusion of pentobarbital (300 micrograms/10 microliters/hr for 7 days) by osmotic minipumps and dependent by abrupt withdrawal from pentobarbital. The levels of [3H]MK-801 binding were elevated in rats 24-hr after withdrawal from pentobarbital while there were no changes except in septum and anterior ventral nuclei in tolerant rats. For assessing the role of NMDA receptor in barbiturate action, an NMDA receptor antagonist (MK-801, 2.7 femto g/10 microliters/hr) was co-infused with pentobarbital. The pentobarbital-infused group had a shorter duration of pentobarbital-induced loss of righting reflex (sleeping time) than that of the control group, and MK-801 alone did not affect the righting reflex. However, co-infusion of MK-801 blocked hyperthermia, and prolonged the onset of convulsions induced by t-butylbicyclophosphorothionate (TBPS) in pentobarbital withdrawal rats. In addition, elevated [35S]TBPS binding was significantly attenuated by co-infusion with MK-801. These results suggest the involvement of NMDA receptor up-regulation in pentobarbital withdrawal and that the development of dependence can be attenuated by the treatment of subtoxic dose of MK-801.  相似文献   

8.
Investigations indicate that the induction of long-term potentiation (LTP) may be mediated by postsynaptic N-methyl-D-aspartate (NMDA) receptors and that the maintenance of LTP may be initiated by nitric oxide (NO), a retrograde messenger carrying signals backward from the postsynaptic to the presynaptic neuron. The present study compared amnestic effects of dizocilpine maleate (MK-801), an NMDA receptor antagonist, and nitro-L-arginine-methyl-ester (L-NAME) and N-nitro-L-arginine (L-NOARG), nitric oxide (NO) inhibitors, in goldfish, using active-avoidance conditioning as the learning paradigm. The results showed that MK-801 and NO inhibitors produced anterograde amnesia at doses that did not impair performance processes necessary for learning to occur. Furthermore, MK-801 did not produce retrograde amnesia, whereas L-NAME did, suggesting that MK-801 impaired learning whereas NO inhibitors impaired memory consolidation and possibly also learning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
A new AMPA receptor antagonist, Ro 48-8587, was characterized pharmacologically in vitro. It is highly potent and selective for AMPA receptors as shown by its effects on [3H]AMPA, [3H] kainate, and [3H] MK-801 binding to rat brain membranes and on AMPA- or NMDA-induced depolarization in rat cortical wedges. [3H]Ro 48-8587 bound with a high affinity (KD = 3 nM) to a single population of binding sites with a Bmax of 1 pmol/mg of protein in rat whole brain membranes. [3H]Ro 48-8587 binding to rat whole brain membranes was inhibited by several compounds with the following rank order of potency: Ro 48-8587 > 6-nitro-7-sulphamoylbenzo[f] quinoxaline-2,3-dione (NBQX) > YM 90K > 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) > quisqualate > AMPA > glutamate > kainate > NMDA. The distribution and abundance of specific binding sites (approximately 95% of total) in sections of rat CNS, revealed by quantitative receptor radioautography and image analysis, indicated a very discrete localization. Highest binding values were observed in cortical layers (binding in layers 1 and 2 > binding in layers 3-6), hippocampal formation, striatum, dorsal septum, reticular thalamic nucleus, cerebellar molecular layer, and spinal cord dorsal horn. At 1 nM, the values for specific binding were highest in the cortical layers 1 and 2 and lowest in the brainstem (approximately 2.6 and 0.4 pmol/mg of protein, respectively). Ro 48-8587 is a potent and selective AMPA receptor antagonist with improved binding characteristics (higher affinity, selectivity, and specific binding) compared with those previously reported.  相似文献   

10.
1. The in vivo effects of nicotine on the nitric oxide (NO) synthase/cyclic GMP pathway of the adult rat hippocampus have been investigated by monitoring the levels of extracellular cyclic GMP during microdialysis in conscious unrestrained animals. 2. Intraperitoneal (i.p.) administration of nicotine caused elevation of cyclic GMP levels which was prevented by mecamylamine. The effect of nicotine was abolished by local infusion of the NO synthase inhibitor N(G)-nitro-L-arginine (L-NOARG) or by the soluble guanylyl cyclase blocker 1H-[1,2,4]oxadiazolo[4.3-a]quinoxaline-1-one (ODQ). 3. Local administration of the NMDA receptor antagonists cis-4-(phosphonomethyl)-2-piperidinecarboxylic acid (CGS19755) and dizocilpine (MK-801) inhibited by about 60% the nicotine-induced elevation of cyclic GMP. Nicotine was able to stimulate cyclic GMP outflow also when administered directly into the hippocampus; the effect was sensitive to mecamylamine, L-NOARG, ODQ or MK-801. 4. Nicotine, either administered i.p. or infused locally, produced augmentation of glutamate and aspartate extracellular levels, whereas the outflows of gamma-aminobutyric acid (GABA) and glycine remained unaffected. Following local administration of high concentrations of nicotine, animals displayed symptoms of mild excitation (sniffing, increased motor and exploratory activity) during the first 20-40 min of infusion, followed by wet dog shake episodes; these behavioural effects were prevented by mecamylamine or MK-801, but not by L-NOARG or by ODQ. 5. It is concluded that (a) nicotine stimulates the production of NO and cyclic GMP in the hippocampus; (b) this occurs, at least in part, through release of glutamate/aspartate and activation of NMDA receptors. Modulation of the NMDA receptor/NO synthase/cyclic GMP pathway may be involved in the cognitive activities of nicotine.  相似文献   

11.
Spontaneous [3H]dopamine ([3H]DA) overflow was measured from striatal slices in the presence of different glutamate (Glu) receptor agonists such as N-methyl-D-aspartate (NMDA), kainate (KA) and quisqualate (QA) and their corresponding antagonists, Dizocilpine maleate (MK-801), D-gamma-glutamyl-aminomethanesulfonic acid (GAMS) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), respectively. [3H]DA uptake and release in the presence of L-Arginine (L-Arg) and NG-nitro-arginine (L-N-Arg), an inhibitor of nitric oxide (NO) synthesis were also evaluated. L-N-Arg alone or combined with L-Arg significantly reduced [3H]DA uptake at 10 and 100 microM from 33% to 44% from striatal slices. Whereas, in brain synaptosomal fractions L-Arg induced a biphasic effect on that [3H]DA uptake in a dose dependent manner, and L-N-Arg showed an absolute inhibition in 80-90% of this [3H]DA uptake at 1-500 microM. The amino acids, lysine, valine and histidine (100 microM) had a little effect inhibitory on [3H]DA uptake from synaptosomal fractions. Glu agonists, NMDA (10 microM) and KA (10 microM) importantly increased the spontaneous [3H]DA overflow, which was blocked by MK-801 (10 microM) and GAMS (10 microM), respectively. QA had no effect on [3H]DA release. L-Arg (10-200 microM) potentiated the spontaneous [3H]DA overflow in a dose dependent fashion from striatal slices, being reverted by 10 microM L-N-Arg alone or in combination with all other compounds; whereas, lysine, histidine and valine did not modify that spontaneous [3H]DA overflow. Results support the hypothesis related to the participation of NO on DA transport possibly synthesized at the dopaminergic (DAergic) terminals in the striatum; also that L-Arg concentration may determine alternative mechanisms to regulate the DAergic activity at the striatum.  相似文献   

12.
The effects of glutathione, glutathione sulfonate and S-alkyl derivatives of glutathione on the binding of glutamate and selective ligands of ionotropic N-methyl-D-aspartate (NMDA) and non-NMDA receptors were studied with mouse synaptic membranes. The effects of glutathione and its analogues on 45Ca2+ influx were also estimated in cultured rat cerebellar granule cells. Reduced and oxidized glutathione, glutathione sulfonate, S-methyl-, -ethyl-, -propyl-, -butyl- and -pentylglutathione inhibited the Na+-independent binding of L-[3H]glutamate. They strongly inhibited also the binding of (S)-2-amino-3-hydroxy-5-[3H]methyl-4-isoxazolepropionate [3H]AMPA (IC50 values: 0.8-15.9 microM). S-Alkylation of glutathione rendered the derivatives unable to inhibit [3H]kainate binding. The NMDA-sensitive binding of L-[3H]glutamate and the binding of 3-[(R)-2-carboxypiperazin-4-yl][1,2-(3)H]propyl-1-phosphonate ([3H]CPP, a competitive antagonist at NMDA sites) were inhibited by the peptides at micromolar concentrations. The strychnine-insensitive binding of the NMDA coagonist [3H]glycine was attenuated only by oxidized glutathione and glutathione sulfonate. All peptides slightly enhanced the use-dependent binding of [3H]dizocilpine (MK-801) to the NMDA-gated ionophores. This effect was additive with the effect of glycine but not with that of saturating concentrations of glutamate or glutamate plus glycine. The glutamate- and NMDA-evoked influx of 45Ca2+ into cerebellar granule cells was inhibited by the S-alkyl derivatives of glutathione. We conclude that besides glutathione the endogenous S-methylglutathione and glutathione sulfonate and the synthetic S-alkyl derivatives of glutathione act as ligands of the AMPA and NMDA receptors. In the NMDA receptor-ionophore these glutathione analogues bind preferably to the glutamate recognition site via their gamma-glutamyl moieties.  相似文献   

13.
The binding of [3H]MK-801 to NMDA receptors was reduced by 40-45% in the dorsal and ventral horns of spinal cords from patients who died with amyotrophic lateral sclerosis (ALS) compared with controls. These results reflect either neurone death with concomitant receptor loss or regulation-related receptor decreases independent of motoneurone degeneration. To distinguish between these possibilities we explored aspects of NMDA receptor regulation using phorbol ester to activate protein kinase C (PKC). Spinal cord sections were exposed to phorbol ester before incubation with [3H]MK-801 to determine levels of NMDA binding. Phorbol ester treatment increased [3H]MK-801 binding in both ALS and control tissue to almost identical levels of specific binding for both groups. The increased [3H]MK-801 binding could be completely blocked by concurrent exposure of spinal cord sections to H-7, a general protein kinase inhibitor. These results suggest that NMDA receptors in ALS spinal cord are decreased as a result of abnormal enzyme activity independent of motoneurone degeneration.  相似文献   

14.
We have previously shown that injection of the inflammatory irritant and small-fiber excitant mustard oil (MO) into the temporomandibular joint (TMJ) region can reflexively induce a prolonged increase in the activity of both digastric and masseter muscles in rats. It is possible that peripheral excitatory amino acid (EAA) receptors play a role in this effect, because MO-evoked increases in jaw muscle activity are attenuated by preapplication of the noncompetitive NMDA receptor antagonist MK-801 into the TMJ region. In the present study the EAA receptor agonists glutamate, NMDA, kainate, and AMPA were applied locally to the TMJ region. Jaw muscle responses similar to those evoked by MO application to the TMJ region were achieved with glutamate, NMDA, AMPA, and kainate. Repeated application of glutamate, NMDA, or AMPA at intervals of 30 min evoked responses in the ipsilateral jaw muscles that were of comparable magnitude. Co-application of the NMDA receptor antagonist DL-2-amino-5-phosphonovalerate (0.5 micromol) significantly reduced the magnitude of the glutamate- and NMDA-evoked ipsilateral jaw muscle responses without affecting responses evoked by AMPA. In contrast, co-application of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (1 nmol) significantly reduced the magnitude of the glutamate- and AMPA-evoked ipsilateral jaw muscle responses without affecting responses evoked by NMDA. This evidence suggests that both NMDA and non-NMDA EAA receptor types are located within the TMJ region and may contribute to jaw muscle activity that can be reflexively evoked from the TMJ region.  相似文献   

15.
We studied changes in glutamate receptors, expression of immediate early genes, and AP-1 DNA binding activity in the brains of phenobarbital (PB)-dependent and -withdrawn rats to investigate the possible involvement of activation of glutamate receptors in PB withdrawal syndrome. PB-dependent rats were prepared by feeding drug-admixed food for 5 weeks. Autoradiographic analysis showed that binding of [3H(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imin e (MK-801), an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, increased significantly in the cerebral cortices of PB-dependent and 24-h-withdrawn rats. However, [3H]MK-801 binding in the hippocampus and [3H]6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and [3H]kainic acid binding in the hippocampus and cerebral cortex were essentially unchanged in both groups. PB withdrawal seizures were followed by increased expression of c-fos mRNA in the hippocampus and cerebral cortex and of c-jun mRNA in the cerebral cortex. The induction of c-fos and c-jun mRNA was suppressed by administration of MK-801. Furthermore, PB withdrawal enhanced AP-1 DNA binding activity in the brain. The present findings suggest functional enhancement of glutamatergic neurotransmission during the development of PB withdrawal syndrome.  相似文献   

16.
The neurotoxic actions of kainate and domoate were studied in cultured murine neocortical neurons at various days in culture and found to be developmentally regulated involving three components of neurotoxicity: (1) toxicity via indirect activation of N-methyl-D-aspartate (NMDA) receptors, (2) toxicity mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and (3) toxicity that can be mediated by kainate receptors when desensitization of the receptors is blocked. The indirect action at NMDA receptors was discovered because (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-im ine (MK-801), an NMDA receptor antagonist, was able to block part of the toxicity. The activation of NMDA receptors is most likely a secondary effect resulting from glutamate release upon kainate or domoate stimulation. 1-(4-Aminophenyl)-3-methylcarbamyl-4-methyl-3,4-dihydro-7,8-ethyle nedioxy-5H-2,3-benzodiazepine (GYKI 53655), a selective AMPA receptor antagonist, abolished the remaining toxicity. These results indicated that kainate- and domoate-mediated toxicity involves both the NMDA and the AMPA receptors. Pretreatment of the cultures with concanavalin A to prevent desensitization of kainate receptors led to an increased neurotoxicity upon stimulation with kainate or domoate. In neurons cultured for 12 days in vitro a small but significant neurotoxic effect was observed when stimulated with agonist in the presence of MK-801 and GYKI 53655. This indicates that the toxicity is produced by kainate receptors in mature cultures. Examining the subunit expression of the kainate receptor subunits GluR6/7 and KA2 did, however, not reveal any major change during development of the cultures.  相似文献   

17.
We investigated the effect of chronically blocking NMDA receptor stimulation to examine changes in GABA(A) receptor expression and pharmacology in cerebellar granule cells at different stages of maturation. We have previously shown that NMDA-selective glutamate receptor stimulation alters GABA(A) receptor pharmacology in cerebellar granule neurons in vitro by altering the levels of selective subunits. When NMDA receptor stimulation is blocked with MK-801 during the first week in vitro, a decrease in the alpha1, gamma2S, and gamma2L receptor subunit mRNAs occurred. When present only during the second week, changes were limited to the alpha1 and gamma2L mRNAs. Finally, if MK-801 was present during the first week and removed during the second week, these changes reversed. Whole-cell voltage-clamp recordings showed that treatment with MK-801 during either the first or second week increased the EC50 of the receptors for GABA and attenuated the potentiation mediated by flunitrazepam. Last, these properties were reversed if MK-801 was removed after the first week in vitro. Our results suggest that MK-801 reversibly inhibits GABA(A) receptor maturation by modulating receptor subunit expression and that the altered pharmacological responses appear to be dominated by changes in the levels of allosteric modulation mediated by the gamma2 receptor subunit.  相似文献   

18.
We employed a canine model to test whether binding to the N-methyl-D-aspartate (NMDA) class of glutamate receptor channels is altered by global cerebral ischemia and/or reperfusion. Ischemia was induced by 10-min cardiac arrest, followed by restoration of spontaneous circulation for periods of 0, 0.5, 2, 4, and 24 h. In vitro autoradiography was performed on frozen brain sections with three radioligands: [3H]glutamate (under conditions to label the NMDA site), [3H]glycine, and [3H]MK-801. Modest decreases in [3H]glutamate and [3H]MK-801 binding were seen in several regions of hippocampus, and parietal and temporal cortex at early times after reperfusion, with values returning toward control by 24 h. In the striatum, a different pattern was seen: [3H]glutamate and [3H]MK-801 binding increased 50-200% at 0.5-4 h after the start of reperfusion, returning toward control levels by 24 h. These increases correlate with findings of increased sensitivity to NMDA-stimulated release of dopamine from striatal tissue in the same model (Werling et al., 1993), and suggest that changes in tissue receptors may contribute to the selective vulnerability to ischemic damage during the first hours following reperfusion.  相似文献   

19.
In unanesthetized decerebrate rats, GYKI 52466 (1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine hydrochloride), an AMPA/kainate receptor antagonist, and MK-801 (dizocilpine), an NMDA receptor antagonist, acted synergistically to depress the micturition reflex. MK-801 (1 mg/kg i.v.) and GYKI 52466 (4 mg/kg i.v.) administered separately had no or only a small depressant effect on reflex bladder contractions but markedly depressed external urethral sphincter activity. However, in MK-801-treated rats, GYKI 52466 decreased the amplitude, frequency and duration of reflex bladder contractions. These results suggest that both AMPA/kainate and NMDA glutamate receptors are important in the micturition reflex pathway and that these receptors may be activated in parallel at some site in the pathway so that excitatory transmission via only one receptor type is sufficient to mediate reflex activation of the bladder.  相似文献   

20.
The hexachlorophene-induced cytotoxic brain oedema is an experimental model of brain damage, suitable for testing cerebroprotective substances (Andreas 1993). In order to examine whether glutamate receptors are involved in mediating functional disorders due to neurotoxic brain damage, we have studied the protective effects of several competitive and non-competitive antagonists using adult male Wistar rats in a simple "ladder-test" for assessing coordinative motor behaviour. Hexachlorophene-induced brain damage was verified by histological examination of the cerebellum with vacuolation of white matter, astrocyte hypertrophy and astrocyte proliferation taken as signs of neurotoxic injury. The non-competitive N-methyl-D-aspartate (NMDA) antagonist dizocilpine maleate (MK-801) decreased the motor disturbance on the first and second day of the "ladder-test" when applied in the doses 0.1 mg/kg and 0.2 mg/kg intraperitoneally for 3 weeks during the hexachlorophene treatment. Acute MK-801 administration (0.1 mg/kg intraperitoneally) after 3 weeks hexachlorophene exposure improved the coordinative motor response only on the first day. When testing the competitive NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) in the dose 1.0 mg/kg intraperitoneally the motor disturbance was lowered significantly earlier than in spontaneous remission. Similar effects were observed with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) in the dose of 0.8 mg/kg intraperitoneally, an antagonist interacting both with the strychnine-insensitive binding site for glycine within the NMDA receptor complex and with the kainate(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor complex. Concurrent MK-801 administration decreased the vacuolation of white matter. The results suggest that NMDA receptors and non-NMDA receptors are involved in development of functional disorders induced by hexachlorophene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号