首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The present work provides an empirical investigation on the thermal characteristics of Ag/oil nanofluids flow inside a sinusoidal tube under a constant heat flux boundary condition. Ag/oil nanofluids have been prepared in low‐volume concentrations of 0.011%, 0.044%, and 0.171%. The average size of the nanoparticles was 20 nm. A heated coil was attached to the upper and lower surface of the tube that satisfied the constant thermal boundary condition of 204 W. The experiment has been pursued at low Reynolds numbers less than 160. A loop was designed to keep the flow hydrodynamically fully developed during the experiment. The test case was a sinusoidal tube. Upper and lower surfaces of the tube have been designed sinusoidally. Moreover, the width of the plates was long enough, so the problem was not considerably affected by the three‐dimensional releasing effect. Convective heat transfer coefficient and Nusselt number were calculated. It has been observed that based on the acquired data of the present work, convective heat transfer coefficient increased up to 23% for the best case (nanofluid with a volume concentration of 0.171%) compared to the base fluid. This happened while the rise of the friction factor was very low. In addition, a comparison between the new results and the previous work by authors showed the positive performance of sinusoidal tubes in increasing the convective heat transfer coefficient (the average increase was calculated to be about 82%) compared to the annular tube.  相似文献   

2.
The present study aims to identify effects due to convection heat transfer in a tube. Turbulent and laminar forced convection flow of a water–Al2O3 nanofluid in a tube subjected to a constant and uniform temperature at the wall was numerically analyzed. The single-phase model was employed to simulate the nanofluid convection, taking into account appropriate thermophysical properties. Particles are assumed spherical with a diameter equal to 24 nm. Simulations have been carried out for the pertinent parameters in the following ranges: Reynolds number from 103 to 105 and volumetric fraction of alumina nanoparticles between 0 to 4%. It is found that convective heat transfer coefficient for nanofluids is greater than that of the base liquid. Heat transfer enhancement is increasing with the particle volume concentration and Reynolds number. As for the friction factor, it shows a good agreement with the classical correlation used for normal fluid, such as the Blasius formula. Moreover, a study on wall shear stress was attempted.  相似文献   

3.
In this article, forced convection heat transfer with laminar and developed flow for water-Al2O3 nanofluid inside a circular tube under constant heat flux from the wall was numerically investigated using computational fluid dynamics method. Both single and two-phase models are accomplished for either constant or temperature dependent properties. For this study nanofluids with size particles equal to 100 nm and particle concentrations of 1 and 4 wt% were used. It is observed that the nanoparticles when dispersed in base fluid such as water enhance the convective heat transfer coefficient. The Nusselt number and heat transfer coefficient of nanofluids were obtained for different nanoparticle concentrations and various Reynolds numbers. Heat transfer was enhanced by increasing the concentration of nanoparticles in nanofluid and Reynolds number. Also, a correlation based on the dimensionless numbers was obtained for the prediction the Nusselt number. The modeling results showed that the predicted values were in very good agreement with reference experimental data.  相似文献   

4.
In this paper the convective heat transfer and friction factor of the nanofluids in a circular tube with constant wall temperature under turbulent flow conditions were investigated experimentally. Al2O3 nanoparticles with diameters of 40 nm dispersed in distilled water with volume concentrations of 0.1–2 vol.% were used as the test fluid. All physical properties of the Al2O3–water nanofluids needed to calculate the pressure drop and the convective heat transfer coefficient were measured. The results show that the heat transfer coefficient of nanofluid is higher than that of the base fluid and increased with increasing the particle concentrations. Moreover, the Reynolds number has a little effect on heat transfer enhancement. The experimental data were compared with traditional convective heat transfer and viscous pressure drop correlations for fully developed turbulent flow. It was found that if the measured thermal conductivities and viscosities of the nanofluids were used in calculating the Reynolds, Prandtl, and Nusselt numbers, the existing correlations perfectly predict the convective heat transfer and viscous pressure drop in tubes.  相似文献   

5.
ABSTRACT

The waviness of tube wall and adding nanoparticles to fluid as two passive enhanced heat-transfer techniques are dully accepted; however, the combined effect of their simultaneous usage has not been dealt with, yet. Therefore in the present study, the convective heat transfer of nanofluid laminar flow inside straight tube and sinusoidal tubes under constant heat flux boundary condition was documented. The nanofluid used in this study was Al2O3/water with volume fractions from 0 to 4%. The effects of Reynolds number, volume fractions of nanoparticles, and the geometry of sinusoidal tubes upon the heat-transfer coefficient were investigated. The results showed that using sinusoidal tubes enhances heat-transfer coefficients. Also, it was observed that increasing Reynolds number leads to higher heat-transfer coefficients in the convergent section. Moreover, it was observed that increasing the sinusoidal wave amplitude augments the convective heat-transfer coefficients; however, the increase in Nusselt number was slight. Furthermore, adding nanoparticles enhances heat transfer especially in large wave amplitude sinusoidal tubes.  相似文献   

6.
Four volume fractions Al2O3-water nanofluids (0.5%, 1%, 1.5% and 2%) are introduced into free single jet impingement experiment as working fluids. The Reynolds numbers, impact angles and nozzle-to-plate distances (H/D) are variable for investigating the heat transfer performance. As to get observation of flow characteristics in nanofluid, heat transferring performance would be studied in this case. Experimental results show that there is a relationship between convective heat transferring coefficient and nanoparticles suspendability within base fluid. Convective heat transfer coefficient is proportional to the extent of nanoparticles concentration, Reynolds number while it decreases with the increasing angle of impacting. In addition, considering the influence of the suspended nanoparticles and the condition of impinging jet, a heat transfer correlation has been proposed combining the influence of the suspended nanoparticles and the condition of impinging jet.  相似文献   

7.
An experimental investigation has been carried out to study the heat transfer and pressure drop characteristics of nanofluid flow inside horizontal helical tube under constant heat flux. The nanofluid is prepared by dispersion of CuO nanoparticle in base oil and stabilized by means of an ultrasonic device. Nanofluids with different particle weight concentrations of 0.5%, 1% and 2% are used. The effect of different parameters such as flow Reynolds number, fluid temperature and nanofluid particle concentration on heat transfer coefficient and pressure drop of the flow are studied. Observations show that by using the helically coiled tube instead of the straight one, the heat transfer performance is improved. Also, the curvature of the tube will result in the pressure drop enhancement. In addition, the heat transfer coefficient as well as pressure drop is increased by using nanofluid instead of base fluid. Furthermore, the performance evaluation of the two enhanced heat transfer techniques studied in this investigation shows that applying helical tube instead of the straight tube is a more effective way to enhance the convective heat transfer coefficient compared to the second method which is using nanofluids instead of the pure liquid.  相似文献   

8.
Turbulent convective heat transfer performance and pressure drop of very dilute (less than 0.24% volume) CuO/water nanofluid flowing through a circular tube were investigated experimentally. Measurements showed that addition of small amounts of nanosized CuO particles to the base fluid increased heat transfer coefficients considerably. In average 25% increase in heat transfer coefficient was observed with 20% penalty in pressure drop. Enhancement ratio did not show significant variation with concentration of CuO in nanofluid in the range studied in this work.  相似文献   

9.
An experimental investigation has been carried out to study the heat transfer and pressure drop characteristics of nanofluid flow inside horizontal flattened tubes under constant heat flux. The nanofluid is prepared by dispersion of CuO nanoparticle in base oil and stabilized by means of an ultrasonic device. Nanofluids with different particle weight concentrations of 0.2%, 0.5%, 1% and 2% are used. Copper tubes of 11.5 mm I.D. are flattened into oblong shapes and used as test sections. The nanofluid flowing inside the tube is heated by an electrical heating coil wrapped around it. Required data are acquired for laminar and hydrodynamically fully developed flow inside round and flattened tubes.The effect of different parameters such as flow Reynolds number, flattened tube internal height and nanofluid particle concentration on heat transfer coefficient and pressure drop of the flow is studied. Observations show that the heat transfer performance is improved as the tube profile is flattened. Flattening the tube profile resulted in pressure drop increasing. In addition, the heat transfer coefficient as well as pressure drop is increased by using nanofluid instead of base fluid. Furthermore, the performance evaluation of the two enhanced heat transfer techniques studied in this investigation shows that applying flattened tubes instead of the round tube is a more effective way to enhance the convective heat transfer coefficient compared to the second method which is using nanofluids instead of the base liquid.  相似文献   

10.
Shell and tube heat exchanger is one of the most prevalent heat exchangers with a wide variety of industrial applications, i.e., power plants, chemical processes, marine industries, HVAC systems, cooling of hydraulic fluid and engine oil in heavy duty diesel engines and the like specifically where a need to heat or cool a large fluid volume exist and also higher-pressure use. In the present study, the effect of using Al2O3-water nanofluid on thermal performance of a commercial shell and tube heat exchanger with segmental baffles is assessed experimentally. For this purpose, Al2O3-gamma nanoparticles with 15 nm mean diameter (99.5% purity) and Sodium Dodecyl Benzene Sulphonate (SDBS) as surfactant are used to make aqueous Al2O3 nanofluid at three various volume fractions of nanoparticles (φ = 0.03, 0.14 and 0.3%). Indeed, in this paper the effect of some parameters of hot working fluid such as Reynolds number and volume concentration of nanoparticles on heat transfer characteristics, friction factor and thermal performance factor of a shell and tube heat exchanger under laminar flow regime is investigated. The results indicate a substantial increment in Nusselt number as well as the overall heat transfer coefficient of heat exchanger by enhancement of Reynolds number and it can be seen that, at a certain Reynolds number, heat transfer characteristics of heat exchanger increase as the nanoparticles volume concentration increases. Outcomes of the heat transfer evaluation demonstrate that applying nanofluids instead of base fluid lead to increment of Nusselt number up to 9.7, 20.9 and 29.8% at 0.03, 0.14 and 0.3 vol%, respectively. Likewise it is seen that at mentioned nanoparticles volume fractions, overall heat transfer coefficient of heat exchanger enhances around 5.4, 10.3 and 19.1%, respectively. In term of pressure drop, a little penalty is found by using nanofluid in the test section. Eventually a thermal performance assessment on the heat exchanger was conducted. According to the analysis results, utilizing nanofluid at minimum and maximum nanoparticles volume fractions (φ = 0.03 and 0.3%) results in average augmentation of around 6.5% and 18.9% in thermal performance factor (η) of the heat exchanger compared to the base liquid, respectively.  相似文献   

11.
Turbulent heat transfer behavior of titanium dioxide/water nanofluid in a circular pipe was investigated experimentally where the volume fraction of nanoparticles in the base fluid was less than 0.25%. The experimental measurements have been carried out in the fully-developed turbulent regime for various volumetric concentrations. The results indicated that addition of small amounts of nanoparticles to the base fluid augmented heat transfer remarkably. There was no much effect on heat transfer enhancement with increasing the volume fraction of nanoparticles. The measurements also showed that the pressure drop of nanofluid was slightly higher than that of the base fluid and increased with increasing the volume concentration. In this paper, experimental results have been compared with the existing correlations for nanofluid convective heat transfer coefficient in turbulent regime. Finally, a new correlation of the Nusselt number will be presented using the results of the experiments with titanium dioxide nanoparticles dispersed in water.  相似文献   

12.
This study deals with an empirical investigation on the convective heat transfer of Cu/oil nanofluid flow inside a concentric annular tube with constant heat flux boundary condition and suggests a correlation to predict the Nusselt number. The average size of particles was 20 nm and the applied nanofluid was prepared by Electrical Explosion of Wire technique with no nanoparticle agglomeration during nanofluid preparation process and experiments. The nanofluid flowing between the tubes is heated by an electrical heating coil wrapped around it. The effects of different parameters such as the flow Reynolds number, tube diameter ratio, and nanofluid particle concentration on heat transfer coefficient are studied. Using the acquired experimental data, a correlation is developed for the estimation of the Nusselt number of nanofluid flow inside the annular tube. This correlation has been presented by using the exponential regression analysis and least‐squares method. The correlation is valid for Cu/base oil nanofluid flow with weight concentrations of 0.12, 0.36, and 0.72 in the hydrodynamically full‐developed laminar flow regime with Re <140, which is applicable in mini‐ and microchannel heat exchangers, and it is in good agreement with the experimental data.  相似文献   

13.
Experiments to evaluate heat transfer coefficient and friction factor for flow in a tube and with twisted tape inserts in the transition range of flow with Al2O3 nanofluid are conducted. The results showed considerable enhancement of convective heat transfer with Al2O3 nanofluids compared to flow with water. It is observed that the equation of Gleninski applicable in transitional flow range for single-phase fluids showed considerable deviation when compared with values obtained with nanofluid. The heat transfer coefficient of nanofluid flowing in a tube with 0.1% volume concentration is 23.7% higher when compared with water at number of 9000. Heat transfer coefficient and pressure drop with nanofluid has been experimentally determined with tapes of different twist ratios and found to deviate with values obtained from equations developed for single-phase flow. A regression equation is developed to estimate the Nusselt number valid for both water and nanofluid flowing in the transition flow Reynolds number range in circular plain tube and with tape inserts. The maximum friction factor with twisted tape at 0.1% nanofluid volume concentration is 1.21 times that of water flowing in a plain tube.  相似文献   

14.
This article reports an experimental study on the forced convective heat transfer and flow characteristics of a nanofluid consisting of water and 0.2 vol.% TiO2 nanoparticles. The heat transfer coefficient and friction factor of the TiO2–water nanofluid flowing in a horizontal double-tube counter flow heat exchanger under turbulent flow conditions are investigated. The Degussa P25 TiO2 nanoparticles of about 21 nm diameter are used in the present study. The results show that the convective heat transfer coefficient of nanofluid is slightly higher than that of the base liquid by about 6–11%. The heat transfer coefficient of the nanofluid increases with an increase in the mass flow rate of the hot water and nanofluid, and increases with a decrease in the nanofluid temperature, and the temperature of the heating fluid has no significant effect on the heat transfer coefficient of the nanofluid. It is also seen that the Gnielinski equation failed to predict the heat transfer coefficient of the nanofluid. Finally, the use of the nanofluid has a little penalty in pressure drop.  相似文献   

15.
The convective heat transfer, friction factor and effectiveness of different volume concentrations of Fe3O4 nanofluid flow in an inner tube of double pipe heat exchanger with return bend has been estimated experimentally and turbulent flow conditions. The test section used in this study is of double pipe type in which the inner tube diameter is 0.019 m, the annulus tube diameter is 0.05 m and the total length of inner tube is 5 m. At a distance of 2.2 m from the inlet of the inner tube the return bend is provided. The hot Fe3O4 nanofluid flows through an inner tube, where as the cold water flows through an annulus tube. The volume concentrations of the nanoparticles used in this study are 0.005%, 0.01%, 0.03% and 0.06% with Reynolds number range from 15,000 to 30,000. Based on the results, the Nusselt number enhancement is 14.7% for 0.06% volume concentration of nanofluid flow in an inner tube of heat exchanger at a Reynolds number of 30,000 when compared to base fluid data; the pumping penalty of nanofluid is < 10%. The effectiveness of heat exchanger for water and nanofluid flow is explained in terms of number of transfer units (NTU) in order to estimate the overall performance of the double pipe heat exchanger. New correlations for Nusselt number and friction factor have been developed based on the experimental data.  相似文献   

16.
In this paper the effect of silica nanoparticles on mass transfer was studied in circular tube by using electrochemical limiting current technique in both laminar and turbulent flow regimes. Underdeveloped concentration and fully developed hydrodynamic profile was considered. Silica nanoparticles with the size range of 7–13 nm was used to prepare electrolyte nanofluid. Base fluid was composed of equimolar potassium ferri-ferrocyanide and sodium hydroxide. Measurements for laminar regime indicated that mass transfer coefficient increased with nanofluid volume fraction up to 0.0057% and decreased with increasing the volume fraction of nanoparticles further. Maximum enhancement in mass transfer reached 21% at Reynolds number of 326. In turbulent flow regime no enhancement was recognized due to the addition of silica nanoparticles to the base electrolyte solution.  相似文献   

17.
The results are reported of an investigation of the heat transfer characteristics and entropy generation for a graphene nanoplatelets (GNP) nanofluid with specific surface area of 750 m2/g under laminar forced convection conditions inside a circular stainless steel tube subjected to constant wall heat flux. The analysis considers constant velocity flow and a concentration range from 0.025 wt.% to 0.1 wt.%. The impact of the dispersed nanoparticles concentration on thermal properties, convective heat transfer coefficient, thermal performance factor and entropy generation is investigated. An enhancement in thermal conductivity for GNP of between 12% and 28% is observed relative to the case without nanoparticles. The convective heat transfer coefficient for the GNP nanofluid is found to be up to 15% higher than for the base fluid. The heat transfer rate and thermal performance for 0.1 wt.% of GNP nanofluid is found to increase by a factor of up to 1.15. For constant velocity flow, frictional entropy generation increases and thermal entropy generation decreases with increasing nanoparticle concentration. But, the total entropy generation tends to decrease when nanoparticles are added at constant velocity and to decrease when velocity rises. Finally, it is demonstrated that a GNP nanofluid with a concentration between 0.075 wt.% and 0.1 wt.% is more energy efficient than for other concentrations. It appears that GNP nanofluids can function as working fluids in heat transfer applications and provide good alternatives to conventional working fluids in the thermal fluid systems.  相似文献   

18.
In this work, a three-dimensional analysis is used to study the heat transfer performance of nanofluid flows through a flattened tube in a laminar flow regime and constant heat flux boundary condition. CuO nanoparticles dispersed in ethylene glycol with particle volume concentrations ranging between 0 and 4 vol.% were used as working fluids for simulating the heat transfer of nanofluids. Effects of some important parameters such as nanoparticle volume concentration, particles Brownian motions, and Reynolds number on heat transfer coefficient have been determined and discussed in details. Results have shown that the heat transfer coefficient increases with increase in the volume concentration level of the nanoparticle, Brownian motion and the Reynolds number. Numerical results have been validated by comparison of simulations with those available in the literature.  相似文献   

19.
Nanofluid is a new class of heat transfer fluids engineered by dispersing metallic or non-metallic nanoparticles with a typical size of less than 100 nm in the conventional heat transfer fluids. Their use remarkably augments the heat transfer potential of the base liquids. This article presents the heat transfer coefficient and friction factor of the TiO2-water nanofluids flowing in a horizontal double tube counter-flow heat exchanger under turbulent flow conditions, experimentally. TiO2 nanoparticles with diameters of 21 nm dispersed in water with volume concentrations of 0.2–2 vol.% are used as the test fluid. The results show that the heat transfer coefficient of nanofluid is higher than that of the base liquid and increased with increasing the Reynolds number and particle concentrations. The heat transfer coefficient of nanofluids was approximately 26% greater than that of pure vol.%, and the results also show that the heat transfer coefficient of the nanofluids at a volume concentration of 2.0 vol.% was approximately 14% lower than that of base fluids for given conditions. For the pressure drop, the results show that the pressure drop of nanofluids was slightly higher than the base fluid and increases with increasing the volume concentrations. Finally, the new correlations were proposed for predicting the Nusselt number and friction factor of the nanofluids, especially.  相似文献   

20.
In this paper, the convective heat transfer of the heat transfer oil-copper oxide nanofluid flow in horizontal smooth and microfin tubes is investigated experimentally. Using a flow control system, the flow regime is always laminar and the wall temperature is constant by using a steam tank. Pure heat transfer oil and nanofluid with the weight concentrations of 0.5%, 1% and 1.5% are used as working fluids. The results are in good agreement with the classic correlations for the pure fluid flow. Based on the results, combination use of nanoparticles and the microfin tube leads to the heat transfer enhancement up to 230%, in comparison with the base fluid flow in the smooth tube. The results are useful in the prediction of the heat transfer rate and the pressure drop in nanofluid flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号