首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 220 毫秒
1.
把含湿多孔介质置于建筑墙体结构中,在室外环境的作用下,多孔介质外表面和内部的水分蒸发吸热,为房间提供部分冷量。文章表述将含湿多孔介质置于建筑北墙中,在建立多孔介质热湿平衡的基础上,采用描述非饱和多孔介质热质迁移的数学模型,分析了室外环境参数及多孔床层结构对床层内温度分布、蒸发量场及水蒸气迁移的影响,为多孔介质应用于建筑结构的推广和应用提供理论指导。  相似文献   

2.
Theoretical and experimental investigations were conducted to determine the heat and moisture migration in unsaturated soil under natural surface boundary conditions. Theoretically, a new model of heat and moisture migration in unsaturated porous media was developed, in which the gradients of volume water content, temperature, and partial vapor pressure were considered as the main driving forces which influence the process of heat and moisture migration in unsaturated soil. A set of coupled, nonlinear, partial differential equations were developed, which are related dynamically to the surface boundary conditions. Heat and moisture migration in sandy soil under solar radiation and air convection were studied experimentally. Temperature, volume water content, and water table evaporation were measured under unsteady conditions. The predictions are in good agreement with experimental data from a fairly sandy soil. © 1999 Scripta Technica, Heat Trans Asian Res, 28(1): 3–17, 1999  相似文献   

3.
The present paper investigates moisture migration in a thin porous bed filled with unconsolidated sand, unsaturated with water, and examines its cooling effect by water evaporation when used as a cooling device for room air-conditioning. An analytical model has been developed to simulate heat and moisture transport phenomena numerically and calculate the evaporation rate of water on which its cooling performance is dependent. For the case of a horizontal thin bed problem, with very small height and a relatively larger surface that is exposed to atmosphere air, one-dimensional, steady-state computation results have been obtained by focusing on the influence of ambient and operating conditions on the physical quantity fields in the porous packed bed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

4.
Mathematical model for describing simultaneous heat and moisture transfer in the porous soil with a dry surface layer was developed by using the volume-averaging method. Numerical simulation was conducted to investigate water evaporation, transient distributions of temperature and moisture in the porous soil at environmental conditions, which might be useful for agricultural application. In order to validate the mathematical model and numerical method, an experiment was conducted under natural environmental conditions. An additional experiment was conducted in a closed-loop wind tunnel to investigate the temperature effect on soil moisture transport. Theoretical and experimental results indicate that the dry surface layer has an important effect on heat and moisture migration in soil and the influence of temperature on moisture transport in unsaturated soil is significant.  相似文献   

5.
考虑温度对土壤湿分迁移的影响,建立描述存在干饱和层时的土壤热湿传递的数学模型,并就自然环境和恒定太阳辐照下两种情况进行数值模拟,获得不同环境条件下土壤中温度和湿分分布以及水分蒸发的动态特性,分析干饱和土壤层对土壤热湿迁移与水分蒸发以及温度对土壤湿分传输的影响。  相似文献   

6.
自然环境下湿分分层土壤中热湿迁移规律的研究   总被引:2,自引:0,他引:2  
建立描述存在干饱和层时的土壤热湿传递的数学模型并进行数值模拟,获得自然环境下土壤中温度、湿分分布以及水分蒸发的动态特性,分析干饱和土壤层对土壤热湿迁移及水分蒸发的影响。数值模拟获得实验支持。  相似文献   

7.
In this paper, a wet porous cooling plate has been used for a building wall. Cooling can be achieved due to the evaporation in the porous layer. A mathematical model on the heat and mass transfer in the unsaturated porous media is developed to analyze the influences of ambient conditions and the porous layer thickness on the cooling performance of the porous evaporative plate. With a decrease in ambient relative humidity and an increase in ambient temperature, more cooling of the porous evaporative plate can be supplied for the inside of the room. The heat exchange between the inside surface of the porous plate and the air in the room should be intensified to achieve a higher cooling efficiency of the porous plate. The ambient wind speed and the thickness of the porous plate also have significant influence on the average temperature of the porous plate. All these results should be taken into account for the utilization of the porous evaporative cooling plate. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20284  相似文献   

8.
The heat and mass transfer in an unsaturated wet cylindrical bed packed with quartz particles was investigated theoretically and experimentally for relatively low convective drying rates. The medium was dried by blowing dry air over the top of the porous bed which was insulated by impermeable, adiabatic material on the bottom and sides. Local thermodynamic equilibrium was assumed in the mathematical model describing the multi‐phase flow in the unsaturated porous medium using the energy and mass conservation equations for heat and mass transfer during the drying. The drying model included convection and capillary transport of the moisture, and convection and diffusion of the gas. The wet and dry regions were coupled with a dynamic boundary condition at the evaporation front. The numerical results indicated that the drying process could be divided into three periods: the initial temperature rise period, the constant drying rate period, and the reduced drying rate period. The numerical results agreed well with the experimental data, verifying that the mathematical model can evaluate the drying performance of porous media for low drying rates. ©2008 Wiley Periodicals, Inc. Heat Trans Asian Res, 37(5): 290–312, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20205  相似文献   

9.
In this work, a vapor adsorption type solar still was designed, fabricated and tested at Thiagarajar College of Engineering, Madurai, India. A vapor adsorbent pipe network comprising activated carbon–methanol pair was integrated with the basin. Losses from the bottom of the still are considerably reduced due to sensible heat absorption by the activated carbon and latent heat of vaporization by methanol. Also water circulated through the inner tube of the adsorbent bed is used as a feed to basin, thus enhancing the evaporation rate during day time. The increase in temperature of the basin due to adsorbent bed and condensation of methanol vapor, augments the evaporation rate during the night time also. Sponges, gravels, sand and black rubbers were used in the vapor adsorption type solar still for improving the yield. Experimental results were compared with ordinary conventional basin type still. The governing energy balance equations for both conventional and vapor adsorption type solar still were solved analytically and compared with experimental results. Theoretical analysis gave very good agreement with experimental results.  相似文献   

10.
高抗  张华 《水电能源科学》2013,31(11):155-158,187
为揭示在蒸发条件下非饱和土中水分的运动规律,进行了一维土柱非饱和蒸发室内试验,并采用湿/热耦合的非等温渗流方程对蒸发条件下土壤水分的运动规律进行了数值模拟,通过将数值计算结果与试验结果进行对比,验证了湿/热耦合的非等温渗流方程的可靠性,同时发现干土层的形成是引起土壤水分运动形式发生转变的根本原因,即在干土层形成前,土壤内水分的运动以液态流动形式为主;在干土层形成后,干土层以下土壤的水分仍以液态流动形式向上运移,在干土层内则是以水蒸气扩散的形式向大气运动。  相似文献   

11.
This paper focuses on the investigation of the 3D mathematical model to simulate the coupled heat and liquid moisture transfer in hygroscopic porous fibrous media. The flow of the liquid moisture, the water vapor sorption/desorption by fibers and the diffusion of the water vapor are taken into account in this 3D model. Prediction-corrector method is used to solve the 3D governing equations. A series of computational results of the coupled heat and moisture transfer are obtained with the specific initial conditions and boundary conditions. The distribution of the water vapor concentration in the void spaces, the volume fraction of the liquid water in the void spaces, the distribution of the water content in fibers and the changes of the temperature in porous fibrous media are computed. It is shown that the effects of the gravity and capillary actions are significant in hygroscopic porous fibrous media. The comparison with the experimental measurements shows the reasonable agreement between the two. The results illustrate that the 3D model of the coupled heat and liquid moisture transfer in hygroscopic porous fibrous media is satisfactory.  相似文献   

12.
An experimental study of thermal and moisture behaviors of dry and wet soils heated by buried capillary plaits was done. This study was carried out on a prototype similar to an agricultural tunnel greenhouse. The experimental procedure consisted on three different measuring phases distinguished by three different operational conditions of the capillary plaits: heating at 70 °C, heating at 40 °C and without heating in summer. During an experimental run, quantities measured are soil temperature, soil water content at various depths, soil surface heat flux, solar radiation under the plastic cover, internal relative humidity, internal and external air temperature. In unsaturated moist soils, the transport of heat is complicated by the fact that heat and mass transfer is a coupled process. During the daily soil temperature variation, it was found that the surface temperature amplitude was higher in wet soil than in dry soil. The water content increased during daytime and decreased during nighttime. The diurnal variation amplitude of water content was higher without underground heating and decreased with the buried heat source temperature.  相似文献   

13.
Porous face bricks on the outside of a building wall exhibit evaporative cooling after absorbing water. Thus, these bricks are promising for use as a passive energy-saving building technology. Artificial watering is an effective method to ensure a sufficient water supply for effective evaporative cooling. However, improper watering measures may result in the waste of water resources while failing to achieve the evaporative cooling effect. In this paper, studies were conducted on a composite wall composed of a facing layer and a base layer as follows. (1) The mass moisture content variations in the porous face brick with respect to soaking time were measured, and the feasibility of using this type of face brick as an evaporative cooling carrier was investigated. (2) The relationship between mass moisture content and the evaporation capacity of the porous face brick was determined under stable conditions. A critical mass moisture content for the porous face brick was determined through analysis of the measurement data. (3) A field measurement was performed to verify the feasibility of using the critical mass moisture content as a criterion for watering. The results indicate that the temperature and heat flows at the inner and outer surfaces of the composite wall were reduced significantly. However, when the mass moisture content exceeded the critical mass moisture content, the evaporative cooling capability tended to stabilize with further watering. Therefore, the critical mass moisture content of the porous face brick can be used as a criterion for watering to conserve water while facilitating the evaporative cooling effect.  相似文献   

14.
对土壤内热湿迁移过程进行了研究,通过对土壤内热湿迁移机理分析,根据质量守恒和能量守恒原理,建立了土壤非饱和区热湿迁移的理论模型,对大气对流环境条件下砂土内热湿迁移过程进行了实验研究,实验测量和数值计算,获得了不同大对流速度作用下土壤中温度,含水率分布以及水分蒸发强度的变化。  相似文献   

15.
The present study investigates how sudden changes in fuel moisture affected the combustion characteristics of the fuel bed in a 4-MW reciprocating-grate furnace. The moisture content of the fuel fed to the furnace was monitored online using a near-infrared spectroscopy device, and the water vapor concentration in the flue gas was measured continuously. To obtain experimental data on fuel-bed conditions, the temperature and gas composition in the bed were measured using a probe. A simplified drying model was developed using the measured gas composition values as inputs. The model was then used to estimate the drying rate and to simulate the extent of the drying zone along the grate. Measurements indicated that a change in the moisture content of the fuel fed to the furnace was detected as a change in water vapor concentration in the flue gas with a delay of about 2 h. The model predicted that a portion of wet fuel would need about 2 h to become dry, in line with the measured time delay of the water vapor concentration change in the flue gas. Overall, there was good alignment between the measured and simulated results, supporting the validity of the model and the assumed mechanisms.  相似文献   

16.
Porous insulation used on pipes carrying cold fluids suffers thermal degradation due to condensation of water vapor and the build up of water in the insulation. Recently, it has been suggested that the thermal degradation can be significantly reduced by wrapping a hydrophilic wick fabric on the cold pipe. The capillary action of the fabric, aided by gravity, allows the condensed moisture to move to the outer surface of the insulation, from where, if ambient conditions are right, it evaporates. This paper presents the details of a mathematical model for condensation in the insulation in the presence of the wick fabric. The model is based on the volume-averaged equations for unsteady transport of heat, water vapor, and liquid water in a porous medium. The wick is modeled as an anisotropic porous medium. The model also allows for the presence of a vapor retarder jacket that is used to reduce the ingress of water vapor into the insulation. The model has been applied to an insulation layer around a horizontal pipe. The presence of the wick is shown to significantly reduce the amount of liquid water in the insulation. The results of the model have been verified using laboratory experiments and field tests.  相似文献   

17.
墙体新建初期含湿量较大,在墙体干燥过程中可能产生严重的湿积累问题,导致保温层受潮严重,影响墙体保温性能。以夏热冬冷地区长沙市的典型建筑墙体为研究对象,采用WUFI@Pro建筑围护结构热湿传递模拟软件,对新建墙体内部保温层从初建成到湿稳定过程中的含湿量变化规律及湿积累进行研究。同时从饰面层的选择、隔汽层的设置、保温层的位置三方面对新建墙体湿积累的影响进行分析,为更好控制建筑墙体保温层中湿积累的产生提供参考。  相似文献   

18.
This paper focuses on a theoretical investigation of the coupling mechanism of heat transfer and liquid moisture diffusion in chitosan-treated porous fibrous material. The porous fibrous materials made of cotton with different porosities are modified by chitosan solution with different concentrations. The moisture regain of the chitosan-treated porous fibrous material increases and the contact angle of the chitosan-treated fiber decreases significantly after modification. For comparison, the simultaneous heat and liquid moisture transfer in porous fibrous materials with different porosities modified by chitosan solution with different concentration are discussed. With specification of initial and boundary conditions, the distributions of the water vapor concentration in the void spaces, the volume fraction of the liquid water in the void spaces, the distribution of the water content in fibers and the temperature changes in chitosan-treated porous fibrous material are obtained numerically. The comparison with the experimental measurements shows the superiority of the numerical model in resolving the coupled heat and mass transfer in chitosan-treated porous fibrous material. Analysis of the computational and experimental results illustrates that the heat and mass transfer in chitosan-treated porous fibrous material is influenced by chitosan concentration and fabric porosity significantly.  相似文献   

19.
回收烟气中的潜热和显热在提高锅炉效率和环境保护方面都具有重要意义。主要针对含湿混合气体在水平单管管外的对流冷凝换热进行了实验研究。通过对实验数据的分析,得到了烟气进口温度、冷却水进口温度、水蒸气的质量分数以及Re的变化对含湿混合气体在水平单管管外冷凝换热的影响。  相似文献   

20.
以树皮、褐煤、I类烟煤为例,分析了沸腾层内未燃烧燃料中的水分蒸发吸热对埋管吸热份额和沸腾层温度的影响得到了高水分燃料的沸腾层烟气热平衡方程。计算和分析表明,对高水分燃料,沸腾层内未燃烧燃料中的水分蒸发吸热所需热量较大,在沸腾层烟气热平衡方程中应予考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号