首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There have been no report about synthesis of the Bi-2212 compound in the Bi–r–La–Cu–O system. We have succeeded in synthesizing the Bi-2212 compound by partial substitution of Pb for Sr and/or Bi in the Bi–Sr–La–Cu–O system. Two samples of nearly the single 2212 phase have been obtained at a nominal composition of Bi1.5Pb0.5Sr2.5La0.5Cu2O z . Both of the samples crystallize in a psedotetragonal lattice, and their lattice parameters are a = 0.5476 nm and c = 3.085 nm or a = 0.5479 nm and c = 3.055 nm. They are both superconductors. The sample with longer lattice parameter c shows an onset of the resistivity drop and zero resistivity at higher temperatures of about 40 K and about 13 K, respectively. This sample also shows a diamagnetic signal starting at about 35 K with lowering temperature.  相似文献   

2.
Siliconcarbonitride (Si–C–N) coatings were deposited on silicon (100) by magnetron sputtering using radio frequency alternating current and direct current. The mechanical performance of the coatings in the two modes was compared through static indentation and scratch test in both microlevel and nanolevel. A structure–property correlation was attempted to establish mechanical behavior, microstructure and bond present in the film. Studies showed RF films to be mechanically tougher and having higher scratch resistance compared to the DC films.  相似文献   

3.
Ti–5Al–4Sn–2Zr–1Mo–0.7Nd–0.25Si alloy is a new high temperature titanium alloy for aeroengine use. In this paper, the fatigue crack initiation in this alloy was investigated. At applied maximum nominal stresses less than 500 MPa, most cracks initiate in the matrix away from the Nd-rich particles. Initiation of these cracks is related to the cracking of equiaxed α phase on the prior β grain boundaries. At high applied stresses, almost half of the cracks initiate in the matrix away form the Nd-rich particles and the other half initiate near Nd-rich particles. The probability that an Nd-rich particle initiates a fatigue crack decreases very rapidly as the particle size falls below 12 μm.  相似文献   

4.
A multilevel Petrov–Galerkin (PG) finite element method to accurately solve the one-dimensional convection–diffusion equation is presented. In this method, the weight functions are different from the basis functions and they are calculated from simple algebraic recursion relations. The basis for their selection is that the given (coarse) mesh may duplicate the solutions obtained at common nodes of a finer virtual mesh. If the fine mesh is sufficiently refined, then the coarse mesh solutions converge to the exact solution. The finer mesh is virtual because its associated system of discrete equations is never solved. This multilevel PG method is extended to cases of the non-homogeneous problem with polynomial force functions. The examples considered confirm that this method is successful in accelerating the rate of convergence of the solution even when the force terms are non-polynomial. The multilevel PG method is therefore efficient and powerful for the general non-homogeneous convection–diffusion equation.  相似文献   

5.
A static method has been used to obtain vapor–liquid equilibrium data for the systems ammonia (NH3)–water (H2O)–potassium hydroxide (KOH) and ammonia–water–sodium hydroxide (NaOH) at temperatures of 303 and 318 K and pressures from 0.1 to 1.3 MPa. The salt concentration in the liquid phase was chosen in the range from 2 to 60 mass% salt in water. In both systems NH3–H2O–NaOH and NH3–H2O–KOH, solid–liquid–vapor equilibria were observed. In the NH3–H2O–KOH system, liquid–liquid–vapor equilibrium was observed at 318 K and 1.1 MPa but at yet unknown concentrations of the liquid phases.  相似文献   

6.
Ag2O-doped (1.2% wt.) nitrate freeze-dried powders (Bi : Pb : Sr : Ca : Cu = 1.7 : 0.3 : 2 : 2.5 : 3.5) were processed under an external electrical field and 17.5 MPa pressure at 800°C, for 4 min in vacuum. Final heat treatments (HT) were applied at 835–850°C for 70 h. in air (Bi, Pb)2Sr2CaCu2O x (2212-phase) was formed by electrical field processing in just 4 min. Electrical field application enhanced (Bi, Pb)2Sr2Ca2Cu3O y (2223-phase) formation during final HT. Ag2O additions to field sintered BSCCO ceramics increased the amount of 2223-phase and the zero resistance critical temperature (T e(R=0)) by 4 k.  相似文献   

7.
Fe–C–V and Fe–C–V–Si alloys of various C, V and Si compositions were investigated in this work. It was found that the phases present in both of these alloy systems were alloyed ferrite, alloyed cementite, and VCx carbides. Depending on the alloy composition the solidified microstructural constituents were granular pearlite-like, lamellar pearlite, or mixtures of alloyed ferrite + granular pearlite-like or granular pearlite-like + lamellar pearlite. In addition, it is shown that in Fe–C–V alloys the C/V ratio influences (a) the type of matrix, (b) the fraction of vanadium carbides, fv and (c) the eutectic cell count, NF. In Fe–C–V alloys, a relationship between the alloy content corresponding to the eutectic line was experimentally determined and can be described by where Ce and Ve are the carbon and vanadium composition of the eutectic. Moreover, in the Fe–C–V alloys (depending on the alloy chemistry), the primary VCx carbides crystallize with non-faceted or non-faceted/faceted interfaces, while the eutectic morphology is non-faceted/non-faceted with regular fiber-like structures, or it possesses a dual morphology (non-faceted/non-faceted with regular fiber-like structures + non-faceted/faceted with complex regular structures). In the Fe–C–V–Si system, the primary VCx carbides solidify with a non-faceted/faceted interface, while the eutectic is non-faceted/faceted with complex regular structures. In particular, spiral eutectic growth is observed when Si is present in the Fe–C–V alloys. In general, it is found that as the matrix constituent shifts from predominantly ferrite to lamellar pearlite, the hardness, yield and tensile strengths exhibit substantial increases at expenses of ductility. Moreover, Si additions lead to alloy strengthening by solid solution hardening of the ferrite phase and/or through a reduction in the eutectic fiber spacings with a decrease in the alloy ductility.  相似文献   

8.
9.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range).  相似文献   

10.
11.
The effect of cooling rate on the composition, morphology, size, and volume fraction of the secondary phase in as‐cast Mg–Gd–Y–Zr alloy is investigated. In the study, a casting containing five steps with thickness of 10–50 mm is produced, in which cooling rate ranging from 2.6 to 11.0 K s?1 is created. The secondary phase is characterized using optical microscope (OM), scanning electron microscope (SEM), and electron probe micro‐analyzer (EPMA). The volume fraction of the secondary phase is determined using OM and quantitative metallographic analysis, and Vickers hardness test is conducted to verify the analysis results. The effect of the cooling rate on the volume fraction of the secondary phase is discussed in detail. The result shows that with the increase of the cooling rate, the size of the secondary phase decreases. The effect of the cooling rate on the volume fraction of the secondary phase is complicated somewhat. A comprehensive analysis on the experimental data shows that a critical cooling rate may exist, over which the volume fraction of the secondary phase decreases with the increase of the cooling rate, however under which the volume fraction increases with the increase of the cooling rate.
  相似文献   

12.
Thermal barrier coatings (TBC) generally consist of a metallic bond coat (BC) and a ceramic top coat (TC). Co–Ni–Cr–Al–Y metallic super alloys and Yttria stabilised zirconia (YSZ) have been widely used as bond coat and top coat for thermal barrier coatings systems, respectively. As a result of long‐term exposure of thermal barrier coatings systems to oxygen‐containing atmospheres at high temperatures, a diffusion of oxygen through the porous ceramic layer occurs and consequently an oxidation zone is formed in the interface between ceramic top coat and metallic bond coat. Alloying components of the BC layer create a so‐called thermally grown oxides layer (TGO). One included oxide type is α‐Al2O3. α‐Al2O3 lowers oxygen diffusion and thus slows down the oxidation process of the bond coat and consequently affects the service life of the coating system positively. The distribution of the alloying elements in the bond coat layer, however, generally causes the formation of mixed oxide phases. The different oxide phases have different growth rates, which cause local stresses, micro‐cracking and, finally, delamination and failure of the ceramic top coat layer. In the present study, a thin Al inter‐layer was deposited by DC‐Magnetron Sputtering on top of the Co–Ni–Cr–Al–Y metallic bond coat, followed by thermal spraying of yttria‐stabilised zirconia (YSZ) as a top coat layer. The deposited Al inter‐layer is meant to transform under operating conditions into a closed layer with high share of α‐Al2O3 that slows down the growth rate of the resulting thermally grown oxides layer. Surface morphology and microstructure characteristics as well as thermal cycling behaviour were investigated to study the effect of the intermediate Al layer on the oxidation of the bond coat compared to standard system. The system with Al inter‐layer shows a smaller thermally grown oxides layer thickness compared to standard system after thermal cycling under same conditions.  相似文献   

13.
Hot compressive behaviors of Ti–6Al–2Zr–1Mo–1V alloy at 1073 K, as well as the evolution of microstructure during deformation process, were investigated in this paper. The results shows that flow stress increases up to a peak stress, then decease with increasing strain, and forms a stable stage at last. The grain size also shows an decrease at first and increase after a minimum value. Dislocations are observed to produce at the interface of α/β phase, and the phase interface and dislocation circle play an important role in impeding the movement of dislocation. As strain increase, micro-deformation bands with high-density dislocation are founded, and dynamic recrystallization occurs.  相似文献   

14.
The vertical sections of Fe–12%Cr–B–xAl–C system with different aluminum contents have been calculated by use of Thermo‐Calc software and the influence of aluminum content on the phase regions and the parameters of eutectic point have been analyzed. Fe–12.0%Cr–1.0%B–2.0%Al–0.3%C and Fe–12.0%Cr–1.0%B–4.0%Al–0.3%C alloy were chosen to be studied by experiment. The phase transition temperatures were measured by differential scanning calorimetry and the microstructure and the phase type was detected by scanning electrone microscope‐energy dispersive X‐ray spectroscopy and X‐ray diffraction. The results indicate that calculated phase diagrams agree well with the experimental results and further prove the thermodynamics database of Thermo‐Calc software is reliable and it can be used to help design the alloy composition and heat treatment process.  相似文献   

15.
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained.  相似文献   

16.
We evaluate all the electron–phonon coupling terms derived from one and two-body electronic interactions, in both the adiabatic and the extreme nonadiabatic limit, for a dimer with a nondegenerate orbital built from atomic wave functions of Gaussian shape. Different forms of the Hamiltonian contributions result in the two limits.  相似文献   

17.
18.
The Karhunen–Loève Galerkin procedure is employed to solve an inverse radiation problem of determining the time‐varying strength of a heat source, which mimics flames in a furnace, from temperature measurements in three‐dimensional participating media where radiation and conduction occur simultaneously. The inverse radiation problem is solved through the minimization of a performance function, which is expressed by the sum of square residuals between calculated and observed temperature, using a conjugate gradient method. Through the Karhunen–Loève Galerkin procedure, one can represent the system dynamics with a minimum degree of freedom, and consequently the amount of computation required in the solution of the inverse problem is reduced drastically when the present technique is adopted. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
20.
The paper presents results of microstructural investigations of MgAl5Ca3Sr magnesium alloys in the as‐cast condition, after creep tests at 180 °C, and after heat treatment at 450 °C for 4.5 hours. The microstructure of MgAl5Ca3Sr alloy is composed of α‐Mg solid solution, irregular shaped (Mg,Al)2Ca phase with C36 crystal structure, bulky (Mg,Al)17(Sr,Ca)2 phase, fine lamellar Mg2Ca phase with C14 structure, needle‐shaped Al2Ca precipitates with the C15 crystal structure. The precipitation of the needle‐shaped Al2Ca phase in the α‐Mg grains and spheroidization of the C14 phase were found after heat treatment at 450 °C in argon atmosphere. The (Mg,Al)2Ca (C36) and (Mg,Al)17(Sr,Ca)2 phases seems to be stable at 450 °C, however, the increasing of aluminum content in C36 compound was observed suggesting the initial stage of C36 → C15 transformation. After creep deformation at 180 °C precipitates of the Al2Ca phase were found in α‐Mg phase. The intermetallic compounds are stable at 180 °C. The MgAl5Ca3Sr alloy exhibits good creep resistance up to 75 MPa. Tensile properties are comparable to those of Mg‐RE‐Zn–Zr alloys.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号