首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.  相似文献   

2.
《分离科学与技术》2012,47(14):2130-2140
A double strip dispersion hybrid liquid membrane (SDHLM) was successfully used in the simultaneous extraction and separation of Cu(II), Zn(II), and Co(II) from Cu-Zn-Co dilute feed phase. In the double SDHLM system, Acorga M5640-loaded membrane was placed between the 1st and the 2nd compartment, whereas the mono(2-ethylhexyl) 2-ethylhexyl phosphonate [HEH(EHP)]-loaded membrane was placed between the 1st and the 3rd compartment of the transport cell. The feed solution was filled in the central feed compartment(1st compartment) of the transport cell. The effect of the different experimental variables on separation was examined. The optimum separation conditions were summarized.

An analysis of mass transfer resistances in the double SDHLM system shows that the mass transfer resistance for the diffusion of Zn(II) ions in the microporous membrane phase is dominant and the mass transfer resistances for the diffusion of copper (II) ions in the aqueous boundary layer and in the microporous membrane phase are dominant in comparison with the overall mass transfer resistance. The experiments verify that the double strip dispersion hybrid liquid membrane (SDHLM) possesses the nonequlibrium mass transfer characteristic.  相似文献   

3.
4.
Cu(I)-L-半胱氨酸强酸性体系配合物组成的研究   总被引:1,自引:1,他引:0  
用极谱法和拉曼光谱法相结合分析测定了Cu(I)-L-半胱氨酸在强酸性体系中的配合物组成。研究表明,L-半胱氨酸(RSH)以RS-负离子形式和Cu 形成配位数分别为1、2、3的配位离子[Cu(RS)][、Cu(RS)2]-[、Cu(RS)3]2-,它们的稳定常数分别为760,5.5×105,8.0×107  相似文献   

5.
A liquid membrane system, denoted a strip dispersion hybrid liquid membrane (SDHLM) containing 1‐phenyl‐3‐methyl‐4‐benzoyl‐pyrazolone –5 as carrier in xylene, was reported for the transport and separation of Cu(II) from Zn (II) ions. The effects of various factors on the transport of copper(II) ions through SDHLM were systematically investigated by orthogonal tests. The optimum transport conditions of copper ions were summarized. In the overall mass transfer process the mass transfer resistance due to the aqueous boundary layer diffusion and diffusion in the microporous membrane is dominant. The accumulation of the Cu(II)‐carrier coordination compound in the membrane shows that the transfer in SDHLM possesses the characteristic of nonequlibrium mass transfer in this study. The rheologic experiments verified that the organic phase in the SDHLM system was the non‐Newtonian fluid and the organic phase after transport of 6 hr was a system of thixotropy in our experimental conditions. The lag ring experiments proved that the thixotropy of the organic phase in the SDHLM system was relevant to the composition of the membrane. In the experimental comparison of two types of liquid membrane, SDHLM has superiority over SLM in respect of transport flux, permeability coefficient, recovery percentage or concentration of solute in the stripping solution, efficiency of uphill transport, loss of membrane solution, and the separation efficiency of the membrane.  相似文献   

6.
《分离科学与技术》2012,47(2):209-213
Biosorption of Eu(III) to various biogenic materials was investigated using luminescence spectroscopy involving excitation of non-degenerate 7F0 → 5D0 transition of bound metal ions. Materials included cultured anther cell fragments from Datura innoxia, pecan shells (Protandrous spp.), dried bean sprouts (vigna spp.), and dried tissues from the roots, stems, and leaves of mature tumbleweeds (Salsola spp.), non-viable algae cells of Chlorella vulgaris immobilized within a polysilicate matrix, sphagnum peat, dried peat, and a commercially available organic peat material. Analysis of resulting excitation spectra indicated only minimal variation in binding environments for the different tumbleweed tissues when respective spectra were visually compared. Observed red-shifts in excitation spectral envelopes suggest an increased stabilization of surface ligand-metal associations for all materials compared to D. innoixia. Application of principal component analysis to these spectra resulted in segregation of materials using a model accounting for 89.48% of the variance using three principal components. This analysis revealed similarities among the spectra from the roots and stems of the tumbleweeds along with that from the bean sprout sample. The model confirmed differences in metal binding to the D. innoxia materials. It also indicated significant differences in metal ion binding to the organic peat and Chlorella-based biosorbents.  相似文献   

7.
Silencing prion: Copper-catalyzed transformations of prion protein (PrP) lead to the production of reactive oxygen species (ROS), PrP oxidation, and cleavage and aggregation in transmissible spongiphorm encephalopathies. Zn(7) MT-3 efficiently targets Cu(II) bound in different coordination modes to PrP-Cu(II) . By an unusual redox-dependent metal-swap reaction, MT-3 modulates the catalytic redox properties of PrP-Cu(II) .  相似文献   

8.
9.
《分离科学与技术》2012,47(8):1113-1118
The selective transport of copper(II), zinc(II), cobalt(II), and nickel(II) ions from nitrate solutions across polymer inclusion membranes (PIMs), which consist of cellulose triacetate as polymeric support, o-nitrophenyl pentyl ether as plasticizer, and 1-alkylimidazole (alkyl from hexyl- to decyl) as ion carrier was reported. PIM was characterized by using atomic force microscopy (AFM) technique. The results show that Cu(II) can be separated very effectively from other transition metal cations as Zn(II), Co(II), and Ni(II) (at a concentration of 10?3 mol/dm3 each). Alkyl substituents at position 1 of the imidazole ring have been found to affect the hydrophobic properties and initial flux of the transported metal ions. The efficiency of separation of metal ions by 1-alkylimidazole followed the sequence: Cu(II) > Zn(II) > Co(II) > Ni(II). The highest selectivity coefficient for Cu(II) was found with 1-hexylimidazole and its 1 mol/dm3 solution in PIM. Separation of the ions was more effective for the nitrates(V) than for chlorides.  相似文献   

10.
In laccase, type 1 copper (Cu1) was connected to the trinuclear copper center (TNC) by the conserved Cys–His bridge. An allosteric coupling between the two redox sites has been reported; however, the molecular mechanism underlining the allosteric coupling is unknown. In this study, ligands of the two type 3 copper sites, including His491 and His493, in CotA were mutated to Cys or Ala. The crystal structures revealed that mutations at His491 and His493 caused rearrangement of the hydrogen‐bond network and geometric distortion of the TNC, which severely impaired the activities of mutants H493A, H493C, and H491C. In addition, the change in TNC affected hydrogen bonds around Cys492 in the mutants and led to Cu1 being partially reduced. These results not only decipher the mechanism of allosteric coupling between Cu1 and TNC in laccase, but also pave the way for laccase protein engineering.  相似文献   

11.
12.
Copper‐induced structural rearrangements of Aβ40 structure and its redox properties are described in this study. Electrochemical and fluorescent methods are used to characterise the behaviour of Aβ–Cu species. The data suggest that time‐dependent folding of Aβ–Cu species may cause changes in the redox potentials.

  相似文献   


13.
Metallothionein (MT) proteins are low molecular mass, cysteine-rich, and metal-binding proteins that play an important role in maintaining metal homeostasis and stress response. However, the evolutionary relationships and functional differentiation of MT in the Oryza genus remain unclear. Here we identified 53 MT genes from six Oryza genera, including O. sativa ssp. japonica, O. rufipogon, O. sativa ssp. indica, O. nivara, O. glumaepatula, and O. barthii. The MT genes were clustered into four groups based on phylogenetic analysis. MT genes are unevenly distributed on chromosomes; almost half of the MT genes were clustered on chromosome 12, which may result from a fragment duplication containing the MT genes on chromosome 12. Five pairs of segmental duplication events and ten pairs of tandem duplication events were found in the rice MT family. The Ka/Ks values of the fifteen duplicated MT genes indicated that the duplicated MT genes were under a strong negative selection during evolution. Next, combining the promoter activity assay with gene expression analysis revealed different expression patterns of MT genes. In addition, the expression of OsMT genes was induced under different stresses, including NaCl, CdCl2, ABA, and MeJ treatments. Additionally, we found that OsMT genes were mainly located in chloroplasts. These results imply that OsMT genes play different roles in response to these stresses. All results provide important insights into the evolution of the MT gene family in the Oryza genus, and will be helpful to further study the function of MT genes.  相似文献   

14.
An equilibrium study on the reactive extraction of Zn and Cu from aqueous solution using bis(2-ethylhexyl) phosphate (HDEHP) in six different diluents including n-hexane, n-heptane, benzene, toluene, chloroform and dichloromethane (DCM) was carried out. Additionally, the extraction equilibrium results were correlated with a linear solvation energy relationship (LSER) model. The extraction efficiency of HDEHP in terms of distribution coefficient was found to vary in the order of diluents as DCM> chloroform> toluene> benzene> n-heptane> n-hexane. The highest value of the distribution coefficient, KD, was observed with DCM as 21.55 (Zn) and 18.97 (Cu). The experimental data were correlated with the LSER model, and a close resemblance was observed between them.  相似文献   

15.
The solution structure of kanamycin A interacting with a ribosomal A-site fragment was solved by transferred-NOE techniques and found to agree with the structure of the complex observed in the crystal. Despite the fast exchange conditions found for the interaction, the bound form was identified by NOESY spectroscopy. At 600 MHz, NOE effects are only observed for the RNA-associated antibiotic. Dissociation constants were measured by NMR spectroscopy for two sites of interaction (K(d1)=150+/-40 microM; K(d2)=360+/-50 microM). Furthermore, the effects of the Cu(II) ion on the antibiotic, on the RNA fragment that mimics the bacterial ribosomal A site, and on the complex formed between these two entities were analyzed. The study led to the proposal of a model that localizes the copper ion within the kanamycin-RNA complex.  相似文献   

16.
The three Schiff base ligands, derivatives of hesperetin, HHSB (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]isonicotinohydrazide), HIN (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]benzhydrazide) and HTSC (N-[2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene]thiosemicarbazide) and their copper complexes, CuHHSB, CuHIN, and CuHTSC were designed, synthesized and analyzed in terms of their spectral characterization and the genotoxic activity. Their structures were established using several methods: elemental analysis, FT-IR, UV-Vis, EPR, and ESI-MS. Spectral data showed that in the acetate complexes the tested Schiff bases act as neutral tridentate ligand coordinating to the copper ion through two oxygen (or oxygen and sulphur) donor atoms and a nitrogen donor atom. EPR measurements indicate that in solution the complexes keep their structures with the ligands remaining bound to copper(II) in a tridentate fashion with (O, N, Oket) or (O, N, S) donor set. The genotoxic activity of the compounds was tested against model tumour (HeLa and Caco-2) and normal (LLC-PK1) cell lines. In HeLa cells the genotoxicity for all tested compounds was noticed, for HHSB and CuHHSB was the highest, for HTSC and CuHTSC–the lowest. Generally, Cu complexes displayed lower genotoxicity to HeLa cells than ligands. In the case of Caco-2 cell line HHSB and HTSC induced the strongest breaks to DNA. On the other side, CuHHSB and CuHTSC induced the highest DNA damage against LLC-PK1.  相似文献   

17.
The variation of the cation location and occupancy at different sites in TbNa-Y zeolites as a function of treatment temperature is monitored by luminescence spectroscopy. It is found that the spectral changes caused by thermal treatments can be qualitatively rationalized in terms of the site symmetry around the Tb(III) ion. The luminescence results demonstrate that most of the Tb(III) ions exchanged into supercages of the zeolite migrate first to sodalite cages at temperatures lower than 473 K and then migrate to hexagonal prisms between 473 and 523 K.  相似文献   

18.
Carbon dioxide and carbon monoxide undergo reactive chemisorption with cesium modified Cu(110) and Cu(110)-O surfaces and via the anionic intermediate CO 2 (a) form a surface carbonate. The CO 2 (a) species was characterised by VEELS and XPS at low temperature (80 K) and the surface carbonate at 295 K. For cesium modified Cu(110) surfaces chemisorption of carbon monoxide gives rise to electron energy loss peaks (v co) as low as 1450 cm–1 at 295 K.  相似文献   

19.
This study was aimed at evaluating the changes in metallothionein (MT) concentration in the blood of patients with acute pancreatitis (AP) and healthy subjects, taking into account the extracellular (plasma) and intracellular (erythrocyte lysate) compartments. The impact of single-nucleotide polymorphisms (SNPs) in the MT1A (rs11640851), MT1B (rs964372) and MT2A (rs10636) genes on MT concentration and their association with the concentration of metals (Cu, Zn, Cd) and ceruloplasmin as Cu-related proteins were analyzed. The concentration of a high-sensitivity C-reactive protein (hs-CRP) and IL-6 as markers of inflammation, and malonyldialdehyde (MDA), superoxide dismutase (SODs) activity and the value of total antioxidant capacity (TAC) as parameters describing the pro/antioxidative balance were also assessed. In the AP patient groups, an increased MT concentration in erythrocyte lysate compared to healthy subjects was shown, especially in individuals with the GG genotype for rs964372 in the MT1B gene. A Zn concentration was especially decreased in the blood of smoking AP patients with the AA genotype for SNP rs11640851 in the MT1A gene and the GC genotype for SNP rs10636 in MT2A, compared to non-smokers with AP, which was accompanied by an increase in the value of the Cu/Zn ratio. The exposure to tobacco smoke xenobiotics increased the risk of AP occurrence in subjects with the CC genotype for SNP rs11640851 in the MT1A gene by more than fourfold. The investigated polymorphisms, rs11640851 in the MT1A gene, rs964372 in the MT1B gene and rs10636 in the MT2A gene, seem to be an important factor in maintaining homeostasis in an organism under oxidative stress conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号