首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ral GTPases belong to the RAS superfamily, and they are directly activated by K-RAS. The RalGEF pathway is one of the three major K-RAS signaling pathways. Ral GTPases do not possess a cysteine nucleophile to develop a covalent inhibitor following the strategy that led to a K-RAS G12C therapeutic agent. However, several cysteine amino acids exist on the surface of guanine exchange factors that activate Ral GTPases, such as Rgl2. Here, we screen a library of cysteine electrophile fragments to determine if covalent bond formation at one of the Rgl2 surface cysteines could inhibit Ral GTPase activation. We found several chloroacetamide and acrylamide fragments that inhibited Ral GTPase exchange by Rgl2. Site-directed mutagenesis showed that covalent bond formation at Cys-284, but not other cysteines, leads to inhibition of Ral activation by Rgl2. Follow-up time- and concentration-dependent studies of derivatives identified by substructure search of commercial libraries further confirmed Cys-284 as the reaction site and identified the indoline fragments as the most promising series for further development. Cys-284 is located outside of the Ral ⋅ Rgl2 interface on a loop that has several residues that come in direct contact with Ral GTPases. Our allosteric covalent fragment inhibitors provide a starting point for the development of small-molecule covalent inhibitors to probe Ral GTPases in animal models.  相似文献   

2.
Chemical probes that covalently modify cysteine residues in a protein-specific manner are valuable tools for biological investigations. Covalent fragments are increasingly implemented as probe starting points, but the complex relationship between fragment structure and binding kinetics makes covalent fragment optimization uniquely challenging. We describe a new technique in covalent probe discovery that enables data-driven optimization of covalent fragment potency and selectivity. This platform extends beyond the existing repertoire of methods for identifying covalent fragment hits by facilitating rapid multiparameter kinetic analysis of covalent structure–activity relationships through the simultaneous determination of Ki, kinact and intrinsic reactivity. By applying this approach to develop novel probes against electrophile-sensitive kinases, we showcase the utility of the platform in hit identification and highlight how multiparameter kinetic analysis enabled a successful fragment-merging strategy.  相似文献   

3.
4.
Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents.  相似文献   

5.
Unnatural amino acids with bioorthogonal reactive groups have the potential to provide a rapid and specific mechanism for covalently inhibiting a protein of interest. Here, we use mutagenesis to insert an unnatural amino acid containing an azide group (Z) into the target protein at positions such that a “click” reaction with an alkyne modulator (X) will alter the function of the protein. This bioorthogonally reactive pair can engender specificity of X for the Z‐containing protein, even if the target is otherwise identical to another protein, allowing for rapid target validation in living cells. We demonstrate our method using inhibition of the Escherichia coli enzyme aminoacyl transferase by both active‐site occlusion and allosteric mechanisms. We have termed this a “clickable magic bullet” strategy, and it should be generally applicable to studying the effects of protein inhibition, within the limits of unnatural amino acid mutagenesis.  相似文献   

6.
7.
The nonreceptor tyrosine TEC kinases are key regulators of the immune system and play a crucial role in the pathogenesis of diverse hematological malignancies. In contrast to the substantial efforts in inhibitor development for Bruton’s tyrosine kinase (BTK), specific inhibitors of the other TEC kinases, including the bone marrow tyrosine kinase on chromosome X (BMX), remain sparse. Here we present a novel class of dual BMX/BTK inhibitors, which were designed from irreversible inhibitors of Janus kinase (JAK) 3 targeting a cysteine located within the solvent-exposed front region of the ATP binding pocket. Structure-guided design exploiting the differences in the gatekeeper residues enabled the achievement of high selectivity over JAK3 and certain other kinases harboring a sterically demanding residue at this position. The most active compounds inhibited BMX and BTK with apparent IC50 values in the single digit nanomolar range or below showing moderate selectivity within the TEC family and potent cellular target engagement. These compounds represent an important first step towards selective chemical probes for the protein kinase BMX.  相似文献   

8.
We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction) to couple gold nanoparticles (Au NPs) functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate.  相似文献   

9.
10.
Farnesyl pyrophosphate synthase (FPPS) is an established target for the treatment of bone diseases, but also shows promise as an anticancer and anti‐infective drug target. Currently available anti‐FPPS drugs are active‐site‐directed bisphosphonate inhibitors, the peculiar pharmacological profile of which is inadequate for therapeutic indications beyond bone diseases. The recent discovery of an allosteric binding site has paved the way toward the development of novel non‐bisphosphonate FPPS inhibitors with broader therapeutic potential, notably as immunomodulators in oncology. Herein we report the discovery, by an integrated lead finding approach, of two new chemical classes of allosteric FPPS inhibitors that belong to the salicylic acid and quinoline chemotypes. We present their synthesis, biochemical and cellular activities, structure–activity relationships, and provide X‐ray structures of several representative FPPS complexes. These novel allosteric FPPS inhibitors are devoid of any affinity for bone mineral and could serve as leads to evaluate their potential in none‐bone diseases.  相似文献   

11.
12.
eEF‐2K is a potential target for treating cancer. However, potent specific inhibitors for this enzyme are lacking. Previously, we identified 2,6‐diamino‐4‐(2‐fluorophenyl)‐4H‐thiopyran‐3,5‐dicarbonitrile (DFTD) as an inhibitor of eEF‐2K. Here we describe its mechanism of action against eEF‐2K, on the basis of kinetic, mutational, and docking studies, and use chemoinformatic approaches to identify a similar class of carbonitrile‐containing compounds that exhibit the same mechanism of action. We show that DFTD behaves as a reversible covalent inhibitor of eEF‐2K with a two‐step mechanism of inhibition: a fast initial binding step, followed by a slower reversible inactivation step. Molecular docking suggests that a nitrile group of DFTD binds within 4.5 Å of the active site Cys146 to form a reversible thioimidate adduct. Because Cys146 is not conserved amongst other related kinases, targeting this residue holds promise for the development of selective covalent inhibitors of eEF‐2K.  相似文献   

13.
Mitochondria are central to health and disease, hence there is considerable interest in developing mitochondria‐targeted therapies that require the delivery of peptides or nucleic acid oligomers. However, progress has been impeded by the lack of a measure of mitochondrial import of these molecules. Here, we address this need by quantitatively detecting molecules within the mitochondrial matrix. We used a mitochondria‐ targeted cyclooctyne (MitoOct) that accumulates several‐ hundredfold in the matrix, driven by the membrane potential. There, MitoOct reacts through click chemistry with an azide on the target molecule to form a diagnostic product that can be quantified by mass spectrometry. Because the membrane potential‐dependent MitoOct concentration in the matrix is essential for conjugation, we can now determine definitively whether a putative mitochondrion‐targeted molecule reaches the matrix. This “ClickIn” approach will facilitate development of mitochondria‐targeted therapies.  相似文献   

14.
布鲁顿式酪氨酸激酶(Btk)和两面神激酶3(JAK3)均是自身免疫性疾病和血液系统恶性肿瘤的潜力靶标.以4-氯吡咯并嘧啶为原料,经7步反应合成了一系列7H-吡咯并[2,3-d]嘧啶-4-胺衍生物,其结构经1HNMR、13CNMR和MS(ESI)分析证实.体外依次考察了所得化合物分别对Btk和JAK3激酶的活性、以及对部...  相似文献   

15.
Several small molecules that bind to the inactive DFG‐out conformation of tyrosine kinases (called type II inhibitors) have shown a good selectivity profile over other kinase targets. To obtain a set of DFG‐out structures, we performed an explicit solvent molecular dynamics (MD) simulation of the complex of the catalytic domain of a tyrosine kinase receptor, ephrin type‐A receptor 3 (EphA3), and a manually docked type II inhibitor. Automatic docking of four previously reported type II inhibitors was used to select a single snapshot from the MD trajectory for virtual screening. High‐throughput docking of a pharmacophore‐tailored library of 175 000 molecules resulted in about 4 million poses, which were further filtered by van der Waals efficiency and ranked according to a force‐field‐based energy function. Notably, around 20 % of the compounds with predicted binding energy smaller than ?10 kcal mol?1 are known type II inhibitors. Moreover, a series of 5‐(piperazine‐1‐yl)isoquinoline derivatives was identified as a novel class of low‐micromolar inhibitors of EphA3 and unphosphorylated Abelson tyrosine kinase (Abl1). The in silico predicted binding mode of the new inhibitors suggested a similar affinity to the gatekeeper mutant T315I of Abl1, which was verified in vitro by using a competition binding assay. Additional evidence for the type II binding mode was obtained by two 300 ns MD simulations of the complex between N‐(3‐chloro‐4‐(difluoromethoxy)phenyl)‐2‐(4‐(8‐nitroisoquinolin‐5‐yl)piperazin‐1‐yl)acetamide and EphA3.  相似文献   

16.
Co-culture system, in which two or more distinct cell types are cultured together, is advantageous in that it can mimic the environment of the in vivo niche of the cells. In this study, we presented a strategy to analyze the secretome of a specific cell type under the co-culture condition in serum-supplemented media. For the cell-specific secretome analysis, we expressed the mouse mutant methionyl-tRNA synthetase for the incorporation of the non-canonical amino acid, azidonorleucine into the newly synthesized proteins in cells of which the secretome is targeted. The azidonorleucine-tagged secretome could be enriched, based on click chemistry, and distinguished from any other contaminating proteins, either from the cell culture media or the other cells co-cultured with the cells of interest. In order to have more reliable true-positive identifications of cell-specific secretory bodies, we established criteria to exclude any identified human peptide matched to bovine proteins. As a result, we identified a maximum of 719 secreted proteins in the secretome analysis under this co-culture condition. Last, we applied this platform to profile the secretome of mesenchymal stem cells and predicted its therapeutic potential on osteoarthritis based on secretome analysis.  相似文献   

17.
Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX‐809 has been reported to facilitate the folding and trafficking of F508del‐CFTR and augment its channel function. The mechanism of action of VX‐809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX‐809: does it bind CFTR directly in order to exert its action? We synthesized two VX‐809 derivatives, ALK‐809 and SUL‐809, that possess an alkyne group and retain the rescue capacity of VX‐809. By using CuI‐catalyzed click chemistry, we provide evidence that the VX‐809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF.  相似文献   

18.
The epidemic caused by the SARS-CoV-2 coronavirus, which has spread rapidly throughout the world, requires urgent and effective treatments considering that the appearance of viral variants limits the efficacy of vaccines. The main protease of SARS-CoV-2 (Mpro) is a highly conserved cysteine proteinase, fundamental for the replication of the coronavirus and with a specific cleavage mechanism that positions it as an attractive therapeutic target for the proposal of irreversible inhibitors. A structure-based strategy combining 3D pharmacophoric modeling, virtual screening, and covalent docking was employed to identify the interactions required for molecular recognition, as well as the spatial orientation of the electrophilic warhead, of various drugs, to achieve a covalent interaction with Cys145 of Mpro. The virtual screening on the structure-based pharmacophoric map of the SARS-CoV-2 Mpro in complex with an inhibitor N3 (reference compound) provided high efficiency by identifying 53 drugs (FDA and DrugBank databases) with probabilities of covalent binding, including N3 (Michael acceptor) and others with a variety of electrophilic warheads. Adding the energy contributions of affinity for non-covalent and covalent docking, 16 promising drugs were obtained. Our findings suggest that the FDA-approved drugs Vaborbactam, Cimetidine, Ixazomib, Scopolamine, and Bicalutamide, as well as the other investigational peptide-like drugs (DB04234, DB03456, DB07224, DB7252, and CMX-2043) are potential covalent inhibitors of SARS-CoV-2 Mpro.  相似文献   

19.
Solute carrier proteins (SLCs) are membrane proteins controlling fluxes across biological membranes and represent an emerging class of drug targets. Here we searched for inhibitors of divalent metal transporters in a library of 1,676 commercially available 3D-shaped fragment-like molecules from the generated database GDB-17, which lists all possible organic molecules up to 17 atoms of C, N, O, S and halogen following simple criteria for chemical stability and synthetic feasibility. While screening against DMT1 (SLC11A2), an iron transporter associated with hemochromatosis and for which only very few inhibitors are known, only yielded two weak inhibitors, our approach led to the discovery of the first inhibitor of ZIP8 (SLC39A8), a zinc transporter associated with manganese homeostasis and osteoarthritis but with no previously reported pharmacology, demonstrating that this target is druggable.  相似文献   

20.
Over the past few decades, there has been an increasing interest in the development of covalent enzyme inhibitors. As it was recently re‐emphasized, the selective, covalent binding of a drug to the desired target can increase efficiency and lower the inhibitor concentration required to achieve a therapeutic effect. In this context, the naturally occurring antibiotic acivicin, and in particular its 3‐chloro‐4,5‐dihydroisoxazole scaffold, has provided a wealth of inspiration to medicinal chemists and chemical biologists alike. In this Concept, to underline the great potentiality that the 3‐halo‐4,5‐dihydroisoxazole warhead has in drug discovery, we present a number of examples, grouped by their potential biological activity and targets, in which this scaffold has been fruitfully used to develop novel biologically active compounds. Through these examples, we show that the 3‐halo‐4,5‐dihydroisoxazole moiety represents an outstanding warhead with high potential for the design of novel covalent enzyme inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号