首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As one of the most prevalent post-translational modifications in eukaryotic cells, ubiquitylation plays vital roles in many cellular processes, such as protein degradation, DNA metabolism, and cell differentiation. Substrate proteins can be tagged by distinct types of polymeric ubiquitin (Ub) chains, which determine the eventual fate of the modified protein. A facile, click chemistry based approach for the efficient generation of linkage-defined Ub chains, including Ub dimers, was recently established. Within these chains, individual Ub moieties are connected through a triazole linkage, rather than the natural isopeptide bond. Herein, it is reported that the conformation of an artificially K48-linked Ub dimer resembles that of the natively linked dimer, with respect to structural and dynamic characteristics, as demonstrated by means of high-resolution NMR spectroscopy. Thus, it is proposed that artificially linked Ub dimers, as generated by this approach, represent potent tools for studying the inherently different properties and functions of distinct Ub chains.  相似文献   

2.
3.
Biochemical studies of integral membrane proteins are often hampered by low purification yields and technical limitations such as aggregation causing in vitro manipulations to be challenging. The ability of controlling proteins in live cells bypasses these limitations while broadening the scope of accessible questions owing to the proteins being in their native environment. Here we take advantage of the intein biorthogonality to mammalian systems, site specificity, fast kinetics, and auto-processing nature as an attractive option for modifying surface proteins. Using EGFR as a model, we demonstrate that the split-intein pair AvaN/NpuC can be used to efficiently and specifically modify target membrane proteins with a synthetic adduct for downstream live cell application.  相似文献   

4.
Protein post-translational modifications (PTMs) regulate nearly all biological processes in eukaryotic cells, and synthetic PTM protein tools are widely used to detect the activity of the related enzymes and identify the interacting proteins in cell lysates. Recently, the study of these enzymes and the interacting proteome has been accomplished in live cells using cell-permeable PTM protein tools. In this concept, we will introduce cell penetrating techniques, the syntheses of cell-permeable PTM protein tools, and offer some future perspective.  相似文献   

5.
The Staudinger reduction and its variants have exceptional compatibility with live cells but can be limited by slow kinetics. Herein we report new small-molecule triggers that turn on proteins through a Staudinger reduction/self-immolation cascade with substantially improved kinetics and yields. We achieved this through site-specific incorporation of a new set of azidobenzyloxycarbonyl lysine derivatives in mammalian cells. This approach allowed us to activate proteins by adding a nontoxic, bioorthogonal phosphine trigger. We applied this methodology to control a post-translational modification (SUMOylation) in live cells, using native modification machinery. This work significantly improves the rate, yield, and tunability of the Staudinger reduction-based activation, paving the way for its application in other proteins and organisms.  相似文献   

6.
Multiplexed single-cell analysis of proteins in their native cellular contexts holds great promise to reveal the composition, interaction and function of the distinct cell types in complex biological systems. However, the existing multiplexed protein imaging technologies are limited by their detection sensitivity or technical demands. To address these issues, here, we develop an ultrasensitive and multiplexed in situ protein profiling approach by reiterative staining with off-the-shelf antibodies and cleavable fluorescent tyramide (CFT). In each cycle of this approach, the protein targets are recognized by antibodies labeled with horseradish peroxidase, which catalyze the covalent deposition of CFT on or close to the protein targets. After imaging, the fluorophores are chemically cleaved, and the antibodies are stripped. Through continuous cycles of staining, imaging, fluorophore cleavage and antibody stripping, a large number of proteins can be quantified in individual cells in situ. Applying this method, we analyzed 20 different proteins in each of ~67,000 cells in a human formalin-fixed paraffin-embedded (FFPE) tonsil tissue. Based on their unique protein expression profiles and microenvironment, these individual cells are partitioned into different cell clusters. We also explored the cell–cell interactions in the tissue by examining which specific cell clusters are selectively associating or avoiding each other.  相似文献   

7.
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.  相似文献   

8.
Post-translational modifications of proteins control myriad biological functions. However, relatively few methods exist for the identification of the enzymes that catalyze these modifications. To expand this repertoire, we report a yeast genetic approach that enables the identification of protein tyrosine kinases (PTKs) from cDNA libraries. Yeasts were transformed with four vectors encoding: 1) a potentially universal PTK substrate fused to the LexA DNA binding domain, 2) the Grb2-SH2 domain fused to the B42 activation domain, 3) a fluorescent reporter gene controlled by LexA DNA sites, and 4) a Jurkat cDNA library. Transient expression of PTKs, such as the lymphocyte-specific kinase Fyn, resulted in phosphorylation of the DNA-bound substrate, recruitment of the Grb2-SH2 domain, and activation of the fluorescent reporter gene. This brief induction of protein expression circumvented the potential toxicity of PTKs to the yeast. Fluorescence activated cell sorting (FACS) enabled isolation of PTKs, and these enzymes were further characterized by flow cytometry and immunoblotting. This approach provides a potentially general method for the identification and evaluation of enzymes involved in the post-translational modification of proteins.  相似文献   

9.
We have implemented a noninvasive optical method for the fast control of protein activity in a live zebrafish embryo. It relies on releasing a protein fused to a modified estrogen receptor ligand binding domain from its complex with cytoplasmic chaperones, upon the local photoactivation of a nonendogenous caged inducer. Molecular dynamics simulations were used to design cyclofen‐OH, a photochemically stable inducer of the receptor specific for 4‐hydroxy‐tamoxifen (ERT2). Cyclofen‐OH was easily synthesized in two steps with good yields. At submicromolar concentrations, it activates proteins fused to the ERT2 receptor. This was shown in cultured cells and in zebrafish embryos through emission properties and subcellular localization of properly engineered fluorescent proteins. Cyclofen‐OH was successfully caged with various photolabile protecting groups. One particular caged compound was efficient in photoinducing the nuclear translocation of fluorescent proteins either globally (with 365 nm UV illumination) or locally (with a focused UV laser or with two‐photon illumination at 750 nm). The present method for photocontrol of protein activity could be used more generally to investigate important physiological processes (e.g., in embryogenesis, organ regeneration and carcinogenesis) with high spatiotemporal resolution.  相似文献   

10.
The post‐translational conjugation of the small ubiquitin‐like modifiers (SUMOs) to target proteins occurs through a complex machinery that involves sequential action of at least three enzymes. SUMOylation performs crucial regulatory functions in several cellular processes. The availability of well‐defined SUMO conjugates is necessary for untangling the mechanism of SUMOylation. However, assembly of homogeneous SUMO conjugates represents a challenge because of the multi‐step synthesis involved and the unwieldiness of the reconstituted biosynthetic systems. Here we describe a simple one‐step chemoenzymatic strategy for conjugating engineered SUMO (eSUMO) proteins to a prefabricated isopeptide‐linked SUMO target peptide. Notably, the eSUMOs were efficiently recognized by the enzymes of the SUMOylation machinery and the SUMO conjugates served as bona fide substrates for DeSUMOylating enzymes.  相似文献   

11.
Lysine acylation constitutes a major group of post‐translational modifications of proteins, and is found in the proteomes of organisms from all kingdoms of life. Sirtuins are considered the main erasers of these modification marks, and thus contribute to acylation‐dependent regulation of enzyme activity, and potentially of protein quality control. We have established a substrate scaffold to enable the analysis of sirtuin activity with a broad range of acyl‐lysine modifications, including hydrophobic fatty acids. Characterization of the deacylase activity of the bacterial SrtN, which is encoded by the yhdZ gene of Bacillus subtilis, showed that this enzyme is capable of removing a broad range of acyl groups. These investigations further showed that SrtN and human SIRT1 are efficient lysine‐deformylases, thereby providing a first clue as to how this nonenzymatic modification might be removed from affected proteins.  相似文献   

12.
An ideal technology for direct imaging of post-translationally modified proteins would be one in which the appearance of a fluorescent signal is linked to a modification dependent protein-activation event. Herein, we utilize the protein semisynthesis technique, expressed protein ligation (EPL), to prepare caged analogues of the signaling protein Smad2; the function and fluorescence of the analogues were then photocontrolled in a correlated fashion. We show that this strategy permits titration of the cellular levels of active phosphorylated Smad2 in its biologically relevant, full-length form. We also prepared a nonphosphorylated, caged full-length Smad2 analogue labeled with an orthogonal fluorophore, and simultaneously imaged the phosphorylated and nonphosphorylated forms of the protein in the same cell. This strategy should enable the dissection of the cellular consequences of post-translational modifications (PTMs) by direct comparison of the behavior of the modified and unmodified forms of the protein following uncaging.  相似文献   

13.
Recently a number of nonnatural prenyl groups containing alkynes and azides have been developed as handles to perform click chemistry on proteins and peptides ending in the sequence “CAAX”, where C is a cysteine that becomes alkylated, A is an aliphatic amino acid and X is any amino acid. When such molecules are modified, a tag containing a prenyl analogue and the “CAAX box” sequence remains. Here we report the synthesis of an alkyne‐containing substrate comprised of only nine nonhydrogen atoms. This substrate was synthesized in six steps from 3‐methylbut‐2‐en‐1‐ol and has been enzymatically incorporated into both proteins and peptides by using protein farnesyltransferase. After prenylation the final three amino acids required for enzymatic recognition can be removed by using carboxypeptidase Y, leaving a single residue (the cysteine from the “CAAX box”) and the prenyl analogue as the only modifications. We also demonstrate that this small tag minimizes the impact of the modification on the solubility of the targeted protein. Hence, this new approach should be useful for applications in which the presence of a large tag hinders the modified protein’s solubility, reactivity, or utility.  相似文献   

14.
Phosphopantetheinylation is an essential post‐translational protein modification to primary and secondary metabolic pathways that ensures bacterial cell viability and virulence, and it is used in the production of many pharmaceuticals. Traditional methods have not provided a comprehensive understanding of these modifications. By using chemical proteomic probes for adenylation and thiolation domains in nonribosomal peptide synthetases (NRPSs), chemoproteomics has been applied to survey and validate the cellular activity of 4‐[3‐chloro‐5‐(trifluoromethyl)pyridin‐2‐yl]‐N‐(4‐methoxypyridin‐2‐yl)piperazine‐1‐carbothioamide (ML267), which is a potent and selective small‐molecule 4′‐phosphopantetheinyl transferase (PPTase) inhibitor that attenuates secondary metabolism and viability of bacterial cells. ML267 inhibited Sfp‐type PPTase and antagonized phosphopantetheinylation in cells, which resulted in a decrease in phosphopantetheinylated NRPSs and the attenuation of Sfp‐PPTase‐dependent metabolite production. These results indicate that this chemoproteomics platform should enable a precise interpretation of the cellular activities of Sfp‐type PPTase inhibitors.  相似文献   

15.
Fusion proteins of human O(6)-alkylguanine-DNA alkyltransferase (AGT) can be specifically labeled with a wide variety of synthetic probes in mammalian cells; this makes them an attractive tool for studying protein function. However, to avoid undesired labeling of endogenous wild-type AGT (wtAGT), the specific labeling of AGT fusion proteins has been restricted to AGT-deficient mammalian cell lines. We present here the synthesis of an inhibitor of wtAGT and the generation of AGT mutants that are resistant to this inhibitor. This enabled the inactivation of wtAGT and specific labeling of fusion proteins of the AGT mutant in vitro and in living cells. The ability to specifically label AGT fusion proteins in the presence of endogenous AGT, after brief incubation of the cells with a small-molecule inhibitor, should significantly broaden the scope of application of AGT fusion proteins for studying protein function in living cells.  相似文献   

16.
Ubiquitin (Ub) plays critical roles in myriad protein degradation and signaling networks in the cell. We report herein Ub mimetics based on backbones that blend natural and artificial amino acid units. The variants were prepared by a modular route based on native chemical ligation. Biological assays show that some are enzymatically polymerized onto protein substrates, and that the resulting Ub tags are recognized for downstream pathways. These results advance the size and complexity of folded proteins mimicked by artificial backbones and expand the functional scope of such agents.  相似文献   

17.
The ability to specifically attach chemical probes to individual proteins represents a powerful approach to the study and manipulation of protein function in living cells. It provides a simple, robust and versatile approach to the imaging of fusion proteins in a wide range of experimental settings. However, a potential drawback of detection using chemical probes is the fluorescence background from unreacted or nonspecifically bound probes. In this report we present the design and application of novel fluorogenic probes for labeling SNAP-tag fusion proteins in living cells. SNAP-tag is an engineered variant of the human repair protein O(6)-alkylguanine-DNA alkyltransferase (hAGT) that covalently reacts with benzylguanine derivatives. Reporter groups attached to the benzyl moiety become covalently attached to the SNAP tag while the guanine acts as a leaving group. Incorporation of a quencher on the guanine group ensures that the benzylguanine probe becomes highly fluorescent only upon labeling of the SNAP-tag protein. We describe the use of intramolecularly quenched probes for wash-free labeling of cell surface-localized epidermal growth factor receptor (EGFR) fused to SNAP-tag and for direct quantification of SNAP-tagged β-tubulin in cell lysates. In addition, we have characterized a fast-labeling variant of SNAP-tag, termed SNAP(f), which displays up to a tenfold increase in its reactivity towards benzylguanine substrates. The presented data demonstrate that the combination of SNAP(f) and the fluorogenic substrates greatly reduces the background fluorescence for labeling and imaging applications. This approach enables highly sensitive spatiotemporal investigation of protein dynamics in living cells.  相似文献   

18.
The enzyme-mediated construction of poly-ubiquitin (Ub) chains on target proteins leads to a variety of cellular responses and is involved in processes ranging from protein degradation to cell cycle control and immune responses. This complex post-translational modification system is under intense investigation, but generation of specific Ub chains and tools made thereof is not always trivial. We discovered that native methionine-1-linked polymeric ubiquitin chains can be constructed in a single chemical reaction. We validate correct folding and regioselective attachment of such chains using linkage specific proteases and further demonstrate that these poly-Ub chains can be converted into thioesters by the activating E1-enzyme. Subsequent ligation reactions using these in situ prepared thioesters leads to poly-ubiquitinated peptides.  相似文献   

19.
Rational structure-based drug design relies on a detailed, atomic-level understanding of protein–ligand interactions. The chiral nature of drug binding sites in proteins has led to the discovery of predominantly chiral drugs. A mechanistic understanding of stereoselectivity (which governs how one stereoisomer of a drug might bind stronger than the others to a protein) depends on the topology of stereocenters in the chiral molecule. Chiral graphs and reduced chiral graphs, introduced here, are new topological representations of chiral ligands using graph theory, to facilitate a detailed understanding of chiral recognition of ligands/drugs by proteins. These representations are demonstrated by application to all ≈14 000+ chiral ligands in the Protein Data Bank (PDB), which will facilitate an understanding of protein–ligand stereoselectivity mechanisms. Ligand modifications during drug development can be easily incorporated into these chiral graphs. In addition, these chiral graphs present an efficient tool for a deep dive into the enormous chemical structure space to enable sampling of unexplored structural scaffolds.  相似文献   

20.
Enzyme-catalysed site-specific protein modifications enable the precision manufacture of conjugates for the study of protein function and/or for therapeutic or diagnostic applications. Asparaginyl ligases are a class of highly efficient transpeptidases with the capacity to modify proteins bearing only a tripeptide recognition motif. Herein, we review the types of protein modification that are accessible using these enzymes, including N- and C-terminal protein labelling, head-to-tail cyclisation, and protein-protein conjugation. We describe the progress that has been made to engineer highly efficient ligases as well as efforts to chemically manipulate the enzyme reaction to favour product formation. These enzymes are powerful additions to the protein engineer‘s toolbox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号