Synthetic riboswitches can serve as sophisticated genetic control devices in synthetic biology, regulating gene expression through direct RNA–ligand interactions. We analyzed a synthetic neomycin riboswitch, which folds into a stem loop structure with an internal loop important for ligand binding and regulation. It is closed by a terminal hexaloop containing a U‐turn and a looped‐out adenine. We investigated the relationship between sequence, structure, and biological activity in the terminal loop by saturating mutagenesis, ITC, and NMR. Mutants corresponding to the canonical U‐turn fold retained biological activity. An improvement of stacking interactions in the U‐turn led to an RNA element with slightly enhanced regulatory activity. For the first position of the U‐turn motif and the looped out base, sequence–activity relationships that could not initially be explained on the basis of the structure of the aptamer–ligand complex were observed. However, NMR studies of these mutants revealed subtle relationships between structure and dynamics of the aptamer in its free or bound state and biological activity. 相似文献
Xenobiology explores synthetic nucleic acid polymers as alternative carriers of genetic information to expand the central dogma. The xylo- and deoxyxylo-nucleic acids (XyNA and dXyNA), containing 3’ epimers of riboses and deoxyriboses, are considered to be potential candidates for an orthogonal system. In this study, thermal and spectroscopic analyses show that XyNA and dXyNA form stable hairpins. The dXyNA hairpin structure determined by NMR spectroscopy contains a flexible loop that locks the stem into a stable ladder-like duplex with marginal right-handed helicity. The reduced flexibility of the dXyNA duplex observed in the stem of the hairpin demonstrates that folding of dXyNA yields more stable structures described so far. 相似文献
Glycoside phosphorylases (GPs) carry out a reversible phosphorolysis of carbohydrates into oligosaccharide acceptors and the corresponding sugar 1-phosphates. The reversibility of the reaction enables the use of GPs as biocatalysts for carbohydrate synthesis. Glycosyl hydrolase family 94 (GH94), which only comprises GPs, is one of the most studied GP families that have been used as biocatalysts for carbohydrate synthesis, in academic research and in industrial production. Understanding the mechanism of GH94 enzymes is a crucial step towards enzyme engineering to improve and expand the applications of these enzymes in synthesis. In this work with a GH94 laminaribiose phosphorylase from Paenibacillus sp. YM-1 (PsLBP), we have demonstrated an enzymatic synthesis of disaccharide 1 (β-d -mannopyranosyl-(1→3)-d -glucopyranose) by using a natural acceptor glucose and noncognate donor substrate α-mannose 1-phosphate (Man1P). To investigate how the enzyme recognises different sugar 1-phosphates, the X-ray crystal structures of PsLBP in complex with Glc1P and Man1P have been solved, providing the first molecular detail of the recognition of a noncognate donor substrate by GPs, which revealed the importance of hydrogen bonding between the active site residues and hydroxy groups at C2, C4, and C6 of sugar 1-phosphates. Furthermore, we used saturation transfer difference NMR spectroscopy to support crystallographic studies on the sugar 1-phosphates, as well as to provide further insights into the PsLBP recognition of the acceptors and disaccharide products. 相似文献
The detailed structure of the chromophore-binding pocket in phytochrome proteins and the structural changes associated with its photocycle are still matters of debate. Insight into the structure and dynamics of the binding pocket has been gained through the comparison of a (15)N NMR spectrum of alpha-C-phycocyanin, which is often used as a model system for the study of phytochromes, with the previously described (15)N NMR spectrum of the cyanobacterial phytochrome Cph1. The former spectrum supports the hypothesis that all four nitrogen atoms of the alpha-C-phycocyanin chromophore are protonated, in analogy with the proposed protonation state for the P(r) and P(fr) forms of Cph1. The spectra show that the chromophores in both proteins exhibit a distinct dynamic behavior, as also indicated by a NOESY spectrum of Cph1. Finally, stereochemical arguments and a Cph1 homology model support the hypothesis that the chromophore in Cph1 is most likely in the ZZZssa conformation in the P(r) form of the protein. 相似文献
RNA motifs may promote interactions with exosomes (EXO-motifs) and lipid rafts (RAFT-motifs) that are enriched in exosomal membranes. These interactions can promote selective RNA loading into exosomes. We quantified the affinity between RNA aptamers containing various EXO- and RAFT-motifs and membrane lipid rafts in a liposome model of exosomes by determining the dissociation constants. Analysis of the secondary structure of RNA molecules provided data about the possible location of EXO- and RAFT-motifs within the RNA structure. The affinity of RNAs containing RAFT-motifs (UUGU, UCCC, CUCC, CCCU) and some EXO-motifs (CCCU, UCCU) to rafted liposomes is higher in comparison to aptamers without these motifs, suggesting direct RNA-exosome interaction. We have confirmed these results through the determination of the dissociation constant values of exosome-RNA aptamer complexes. RNAs containing EXO-motifs GGAG or UGAG have substantially lower affinity to lipid rafts, suggesting indirect RNA-exosome interaction via RNA binding proteins. Bioinformatics analysis revealed RNA aptamers containing both raft- and miRNA-binding motifs and involvement of raft-binding motifs UCCCU and CUCCC. A strategy is proposed for using functional RNA aptamers (fRNAa) containing both RAFT-motif and a therapeutic motif (e.g., miRNA inhibitor) to selectively introduce RNAs into exosomes for fRNAa delivery to target cells for personalized therapy. 相似文献
Phospholipid nanodiscs are a native‐like membrane mimetic that is suitable for structural studies of membrane proteins. Although nanodiscs of different sizes exist for various structural applications, their thermal and long‐term stability can vary considerably. Covalently circularized nanodiscs are a perfect tool to overcome these limitations. Existing methods for the production of circularized nanodiscs can be time‐consuming and technically demanding. Therefore, an easy in vivo approach, in which circularized membrane scaffold proteins (MSPs) can be directly obtained from Escherichia coli culture, is reported herein. Nostoc punctiforme DnaE split‐intein fusions with MSPs of various lengths are used and consistently provide circularized nanodiscs in high yields. With this approach, a large variety of circularized nanodiscs, ranging from 7 to 26 nm in diameter, that are suitable for NMR spectroscopy and electron microscopy (EM) applications can be prepared. These nanodiscs are superior to those of the corresponding linear versions in terms of stability and size homogeneity, which affects the quality of NMR spectroscopy data and EM experiments. Due to their long‐term stability and homogeneity, the presented small circular nanodiscs are suited for high‐resolution NMR spectroscopy studies, as demonstrated with two membrane proteins of 17 or 32 kDa in size. The presented method will provide easy access to circularized nanodiscs for structural studies of membrane proteins and for applications in which a defined and stable nanodisc size is required. 相似文献
Dynamic nuclear polarization (DNP) has shown great promise as a tool to enhance the nuclear magnetic resonance signals of proteins in the cellular environment. As sensitivity increases, the ability to select and efficiently polarize a specific macromolecule over the cellular background has become desirable. Herein, we address this need and present a tetrazine-based DNP agent that can be targeted selectively to proteins containing the unnatural amino acid (UAA) norbornene-lysine. This UAA can be introduced efficiently into the cellular milieu by genetic means. Our approach is bio-orthogonal and easily adaptable to any protein of interest. We illustrate the scope of our methodology and investigate the DNP transfer mechanisms in several biological systems. Our results shed light on the complex polarization-transfer pathways in targeted DNP and ultimately pave the way to selective DNP-enhanced NMR spectroscopy in both bacterial and mammalian cells. 相似文献
Erythropoietin‐producing hepatocellular (EPH) receptors are transmembrane receptor tyrosine kinases. Their extracellular domains bind specifically to ephrin A/B ligands, and this binding modulates intracellular kinase activity. EPHs are key players in bidirectional intercellular signaling, controlling cell morphology, adhesion, and migration. They are increasingly recognized as cancer drug targets. We analyzed the binding of NVP‐BHG712 (NVP) to EPHA2 and EPHB4. Unexpectedly, all tested commercially available NVP samples turned out to be a regioisomer (NVPiso) of the inhibitor, initially described in a Novartis patent application. They only differ by the localization of a single methyl group on either one of two adjacent nitrogen atoms. The two compounds of identical mass revealed different binding modes. Furthermore, both in vitro and in vivo experiments showed that the isomers differ in their kinase affinity and selectivity. 相似文献
We present an automated NMR-guided docking workflow that can be used to generate models of protein-ligand complexes based on data from NOE NMR experiments. The first step is to generate a number of intermolecular distance constraints from experimental NOE data. Then, the ligand is docked on an ensemble of receptor structures to account for protein flexibility, and multiple poses are generated. Finally, we use the NOE-based constraints to filter and score docking poses based on the percentage of NOE constraints that are consistent with protein-ligand interatomic distances. This workflow was successfully used during a lead optimization project to generate models of synthetic protein-protein interaction (PPI) inhibitors bound to the HDM2 protein. 相似文献
X‐ray crystallography and solution NMR of detergent‐reconstituted OmpA (outer membrane protein A from E. coli) had shown that this protein forms an eight‐stranded transmembrane β‐barrel, but only limited information was obtained for the extracellular loops. In NMR studies of OmpA in two different detergent micelles, “NMR‐invisible” amino acid residues in‐between the extracellular loops and the β‐barrel prevented complete structural characterization. Here, we show that this NMR‐invisible ring around the β‐barrel of OmpA is also present in lipid bilayer nanodiscs and in mixed micelles with a third detergent, thus suggesting that the implicated rate processes have a functional role rather than representing an artifact of the protein reconstitution. In addition to sequence‐specific NMR assignments for OmpA in the nanodiscs, the present results are based on a protocol of micro‐coil TROSY‐ and CRINEPT‐type NMR diffusion measurements for studying the hydrodynamic properties and the foldedness of [2H,15N]‐labeled membrane proteins in nanodiscs. This protocol can be applied under conditions closely similar to those used for NMR structure determinations or crystallization trials. 相似文献
Look to the left : The carbon nucleus of a substituent in the gauche position about a subtending dihedral angle experiences an NMR chemical shift of about 5 ppm relative to the same chemical group present in the trans position. We demonstrate that this “γ‐gauche effect” can be utilized to determine the conformation and extent of rotameric averaging for leucine amino acid side chains in the protein calbindin D9k. The success of this approach suggests that rules can be established to define the orientation of other side chains in proteins as well, offering an easy gauge of protein side‐chain flexibility, as well as avenues to advance protein structure determination by using side‐chain chemical shifts.
Single ribonucleotide intrusions represent the most common nonstandard nucleotide type found incorporated in genomic DNA, yet little is known of their structural impact. This lesion incurs genomic instability in addition to affecting the physical properties of the DNA. To probe for structural and dynamic effects of single ribonucleotides in various sequence contexts—AxC, CxG, and GxC, where x=rG or dG—we report the structures of three single‐ribonucleotide‐containing DNA duplexes and the corresponding DNA controls. The lesion subtly and locally perturbs the structure asymmetrically on the 3′ side of the lesion in both the riboguanosine‐containing and the complementary strand of the duplex. The perturbations are mainly restricted to the sugar and phosphodiester backbone. The ribose and 3′‐downstream deoxyribose units are predominately in N‐type conformation; backbone torsion angles ? and/or ζ of the ribonucleotide or upstream deoxyribonucleotide are affected. Depending on the flanking sequences, the C2′?OH group forms hydrogen bonds with the backbone, 3′‐neighboring base, and/or sugar. Interestingly, even in similar purine‐rG‐pyrimidine environments (A‐rG‐C and G‐rG‐C), a riboguanosine unit affects DNA in a distinct manner and manifests different hydrogen bonds, which makes generalizations difficult. 相似文献
The receptor tyrosine kinase EPHA2 is overexpressed in several cancers (breast, head and neck, non‐small‐cell lung cancer). Small‐molecule‐based inhibition of the EPHA2 kinase domain (KD) is seen as an important strategy for therapeutic intervention. However, obtaining structural information by crystallography or NMR spectroscopy for drug discovery is severely hampered by the lack of pure, homogeneous protein. Here, different fragments of the EPHA2 KD were expressed and purified from both bacterial (Escherichia coli, BL21(DE3) cells) and insect cells (Spodoptera frugiperda, Sf9 cells).1H,15N HSQC was used to determine the proper folding and homogeneity of all the constructs. Protein from E. coli was well‐folded but unstable, and it did not crystallize. However, a construct (D596–G900) produced in Sf9 cells yielded homogenous, well‐folded protein that crystallized readily, thereby resulting in eleven new EPHA2–ligand crystal structures. We have also established a strategy for selective and uniform 15N‐amino acid labeling of EPHA2 KD in Sf9 cells for investigating dynamics and EPHA2–drug interactions by NMR. 相似文献
ShK is a 35‐residue peptide that binds with high affinity to human voltage‐gated potassium channels through a conserved K‐Y dyad. Here we have employed NMR measurements of backbone‐amide 15N spin‐relaxation rates to investigate motions of the ShK backbone. Although ShK is rigid on the ps to ns timescale, increased linewidths observed for 11 backbone‐amide 15N resonances identify chemical or conformational exchange contributions to the spin relaxation. Relaxation dispersion profiles indicate that exchange between major and minor conformers occurs on the sub‐millisecond timescale. Affected residues are mostly clustered around the central helix‐kink‐helix structure and the critical K22–Y23 motif. We suggest that the less structured minor conformer increases the exposure of Y23, known to contribute to binding affinity and selectivity, thereby facilitating its interaction with potassium channels. These findings have potential implications for the design of new channel blockers based on ShK. 相似文献
Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure–function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition. 相似文献