首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CRISPR-Cas allows us to introduce desired genome editing, including mutations, epitopes, and deletions, with unprecedented efficiency. The development of CRISPR-Cas has progressed to such an extent that it is now applicable in various fields, with the help of model organisms. C. elegans is one of the pioneering animals in which numerous CRISPR-Cas strategies have been rapidly established over the past decade. Ironically, the emergence of numerous methods makes the choice of the correct method difficult. Choosing an appropriate selection or screening approach is the first step in planning a genome modification. This report summarizes the key features and applications of CRISPR-Cas methods using C. elegans, illustrating key strategies. Our overview of significant advances in CRISPR-Cas will help readers understand the current advances in genome editing and navigate various methods of CRISPR-Cas genome editing.  相似文献   

3.
4.
Lactobacillus, a genus of lactic acid bacteria, plays a crucial function in food production preservation, and probiotics. It is particularly important to develop new Lactobacillus strains with superior performance by gene editing. Currently, the identification of its functional genes and the mining of excellent functional genes mainly rely on the traditional gene homologous recombination technology. CRISPR/Cas9-based genome editing is a rapidly developing technology in recent years. It has been widely applied in mammalian cells, plants, yeast, and other eukaryotes, but less in prokaryotes, especially Lactobacillus. Compared with the traditional strain improvement methods, CRISPR/Cas9-based genome editing can greatly improve the accuracy of Lactobacillus target sites and achieve traceless genome modification. The strains obtained by this technology may even be more efficient than the traditional random mutation methods. This review examines the application and current issues of CRISPR/Cas9-based genome editing in Lactobacillus, as well as the development trend of CRISPR/Cas9-based genome editing in Lactobacillus. In addition, the fundamental mechanisms of CRISPR/Cas9-based genome editing are also presented and summarized.  相似文献   

5.
Little is known about the effect on spermiogenesis induced by microcystin-leucine arginine (MC-LR), even though such data are very important to better elucidate reproductive health. In the current work, with the aid of nematode Caenorhabditis elegans (C. elegans) as an animal model, we investigated the defects on spermiogenesis induced by MC-LR. Our results showed that MC-LR exposure induced sperm morphology abnormality and caused severe defects of sperm activation, trans-activation, sperm behavior and competition. Additionally, the expression levels of spe-15 were significantly decreased in C. elegans exposed to MC-LR lower than 16.0 μg/L, while the expression levels of spe-10 and fer-1 could be significantly lowered in C. elegans even exposed to 1.0 μg/L of MC-LR. Therefore, the present study reveals that MC-LR can induce adverse effects on spermiogenesis, and those defects of sperm functions may be induced by the decreases of spe-10, spe-15 and fer-1 gene expressions in C. elegans.  相似文献   

6.
The CRISPR (clustered regularly interspaced short palindromic repeat)/Cas (CRISPR-associated) is a revolutionary genome editing technology that has been used to achieve site-specific gene knock-out, large fragment deletion, or base editing in many plant species including soybean (Glycine max). The Streptococcus pyogenes Cas9 (SpCas9) is widely used in plants at present, although there are some reports describing the application of CRISPR/Cpf1 in soybean. Therefore, the selection range of PAM (protospacer adjacent motif) sequences for soybean is currently limited to 5′-NGG-3′ (SpCas9) or 5′-TTTN-3′ (Cpf1), which in turn limits the number of genes that can be mutated. Another Cas9 enzyme from Staphylococcus aureus (SaCas9) recognizes the PAM sequence 5′-NNGRRT-3′ (where R represents A or G), which can provide a wider range of potential target sequences. In this study, we developed a CRISPR/SaCas9 system and used this tool to specifically induce targeted mutations at five target sites in the GmFT2a (Glyma.16G150700) and GmFT5a (Glyma.16G044100) genes in soybean hairy roots. We demonstrated that this tool can recognize the PAM sequences 5′-AAGGGT-3′, 5′-GGGGAT-3′, 5′-TTGAAT-3′, and 5′-TAGGGT-3′ in soybean, and it achieved mutation rates ranging from 34.5% to 73.3%. Our results show that we have established a highly efficient CRISPR/SaCas9 tool that is as suitable as SpCas9 for genome editing in soybean, and it will be useful for expanding the range of target sequences for genome editing.  相似文献   

7.
Castanea sativa is an important tree nut species worldwide, highly appreciated for its multifunctional role, in particular for timber and nut production. Nowadays, new strategies are needed to achieve plant resilience to diseases, climate change, higher yields, and nutritional quality. Among the new plant breeding techniques (NPBTs), the CRISPR/Cas9 system represents a powerful tool to improve plant breeding in a short time and inexpensive way. In addition, the CRISPR/Cas9 construct can be delivered into the cells in the form of ribonucleoproteins (RNPs), avoiding the integration of exogenous DNA (GMO-free) through protoplast technology that represents an interesting material for gene editing thanks to the highly permeable membrane to DNA. In the present study, we developed the first protoplast isolation protocol starting from European chestnut somatic embryos. The enzyme solution optimized for cell wall digestion contained 1% cellulase Onozuka R-10 and 0.5% macerozyme R-10. After incubation for 4 h at 25 °C in dark conditions, a yield of 4,500,000 protoplasts/mL was obtained (91% viable). The transfection capacity was evaluated using the GFP marker gene, and the percentage of transfected protoplasts was 51%, 72 h after the transfection event. The direct delivery of the purified RNP was then performed targeting the phytoene desaturase gene. Results revealed the expected target modification by the CRISPR/Cas9 RNP and the efficient protoplast editing.  相似文献   

8.
9.
10.
11.
CRISPR/Cas-based genome editing technologies, which allow the precise manipulation of plant genomes, have revolutionized plant science and enabled the creation of germplasms with beneficial traits. In order to apply these technologies, CRISPR/Cas reagents must be delivered into plant cells; however, this is limited by tissue culture challenges. Recently, viral vectors have been used to deliver CRISPR/Cas reagents into plant cells. Virus-induced genome editing (VIGE) has emerged as a powerful method with several advantages, including high editing efficiency and a simplified process for generating gene-edited DNA-free plants. Here, we briefly describe CRISPR/Cas-based genome editing. We then focus on VIGE systems and the types of viruses used currently for CRISPR/Cas9 cassette delivery and genome editing. We also highlight recent applications of and advances in VIGE in plants. Finally, we discuss the challenges and potential for VIGE in plants.  相似文献   

12.
The CRISPR/Cas9 system has recently emerged as a useful gene-specific editing tool. However, this approach occasionally results in the digestion of both the DNA target and similar DNA sequences due to mismatch tolerance, which remains a significant drawback of current genome editing technologies. However, our study determined that even single-base mismatches between the target DNA and 5′-truncated sgRNAs inhibited target recognition. These results suggest that a 5′-truncated sgRNA/Cas9 complex could be used to negatively select single-base-edited targets in microbial genomes. Moreover, we demonstrated that the 5′-truncated sgRNA method can be used for simple and effective single-base editing, as it enables the modification of individual bases in the DNA target, near and far from the 5′ end of truncated sgRNAs. Further, 5′-truncated sgRNAs also allowed for efficient single-base editing when using an engineered Cas9 nuclease with an expanded protospacer adjacent motif (PAM; 5′-NG), which may enable whole-genome single-base editing.  相似文献   

13.
Some prevention strategies, including vaccines and antibiotic alternatives, have been developed to reduce enterotoxigenic Escherichia coli proliferation in animal production. In this study, a wild-type strain of BE311 with a virulent heat-stable enterotoxin gene identical to E. coli K99 was isolated for its high potential for gene expression ability. The whole genome of E. coli BE311 was sequenced for gene analyses and editing. Subsequently, the fluorescent gene mCherry was successfully knocked into the genome of E. coli BE311 by CRISPR/Cas9. The E. coli BE311–mCherry strain was precisely quantified through the fluorescence intensity and red colony counting. The inflammatory factors in different intestinal tissues all increased significantly after an E. coli BE311–mCherry challenge in Sprague–Dawley rats (p < 0.05). The heat-stable enterotoxin gene of E. coli BE311 was knocked out, and an attenuated vaccine host E. coli BE311-STKO was constructed. Flow cytometry showed apoptotic cell numbers were lower following a challenge of IPEC-J2 cells with E. coli BE311-STKO than with E. coli BE311. Therefore, the E. coli BE311–mCherry and E. coli BE311-STKO strains that were successfully constructed based on the gene knock-in and knock-out technology could be used as ideal candidates in ETEC challenge models and for the development of attenuated vaccines.  相似文献   

14.
CRISPR/Cas9-based cytosine base editors (CBEs) and adenine base editors (ABEs) can efficiently mediate C-to-T/G-to-A and A-to-G/T-to-C substitutions, respectively; however, achieving base transversions (C-to-G/C-to-A and A-to-T/A-to-C) is challenging and has been rarely studied in plants. Here, we constructed new plant C-to-G base editors (CGBEs) and new A-to-Y (T/C) base editors and explored their base editing characteristics in rice. First, we fused the highly active cytidine deaminase evoFENRY and the PAM-relaxed Cas9-nickase variant Cas9n-NG with rice and human uracil DNA N-glycosylase (rUNG and hUNG), respectively, to construct CGBE-rUNG and CGBE-hUNG vector tools. The analysis of five NG-PAM target sites showed that these CGBEs achieved C-to-G conversions with monoallelic editing efficiencies of up to 27.3% in T0 rice, with major byproducts being insertion/deletion mutations. Moreover, for the A-to-Y (C or T) editing test, we fused the highly active adenosine deaminase TadA8e and the Cas9-nickase variant SpGn (with NG-PAM) with Escherichia coli endonuclease V (EndoV) and human alkyladenine DNA glycosylase (hAAG), respectively, to generate ABE8e-EndoV and ABE8e-hAAG vectors. An assessment of five NG-PAM target sites showed that these two vectors could efficiently produce A-to-G substitutions in a narrow editing window; however, no A-to-Y editing was detected. Interestingly, the ABE8e-EndoV also generated precise small fragment deletions in the editing window from the 5′-deaminated A base to the SpGn cleavage site, suggesting its potential value in producing predictable small-fragment deletion mutations. Overall, we objectively evaluated the editing performance of CGBEs in rice, explored the possibility of A-to-Y editing, and developed a new ABE8e-EndoV tool, thus providing a valuable reference for improving and enriching base editing tools in plants.  相似文献   

15.
A continuous rise in demand for vegetable oils, which comprise mainly the storage lipid triacylglycerol, is fueling a surge in research efforts to increase seed oil content and improve fatty acid composition in oilseed crops. Progress in this area has been achieved using both conventional breeding and transgenic approaches to date. However, further advancements using traditional breeding methods will be complicated by the polyploid nature of many oilseed crops and associated time constraints, while public perception and the prohibitive cost of regulatory processes hinders the commercialization of transgenic oilseed crops. As such, genome editing using CRISPR/Cas is emerging as a breakthrough breeding tool that could provide a platform to keep pace with escalating demand while potentially minimizing regulatory burden. In this review, we discuss the technology itself and progress that has been made thus far with respect to its use in oilseed crops to improve seed oil content and quality. Furthermore, we examine a number of genes that may provide ideal targets for genome editing in this context, as well as new CRISPR-related tools that have the potential to be applied to oilseed plants and may allow additional gains to be made in the future.  相似文献   

16.
As one of the most widespread groups of Gram–negative bacteria, Pseudomonas bacteria are prevalent in almost all natural environments, where they have developed intimate associations with plants and animals. Pseudomonas fulva is a novel species of Pseudomonas with clinical, animal, and plant–associated isolates, closely related to human and animal health, plant growth, and bioremediation. Although genetic manipulations have been proven as powerful tools for understanding bacterial biological and biochemical characteristics and the evolutionary origins, native isolates are often difficult to genetically manipulate, thereby making it a time–consuming and laborious endeavor. Here, by using the CRISPR–Cas system, a versatile gene–editing tool with a two–plasmid strategy was developed for a native P. fulva strain isolated from the model organism silkworm (Bombyx mori) gut. We harmonized and detailed the experimental setup and clarified the optimal conditions for bacteria transformation, competent cell preparation, and higher editing efficiency. Furthermore, we provided some case studies, testing and validating this approach. An antibiotic–related gene, oqxB, was knocked out, resulting in the slow growth of the P. fulva deletion mutant in LB containing chloramphenicol. Fusion constructs with knocked–in gfp exhibited intense fluorescence. Altogether, the successful construction and application of new genetic editing approaches gave us more powerful tools to investigate the functionalities of the novel Pseudomonas species.  相似文献   

17.
18.
Due to the sudden change in temperature in spring, Chinese cabbage, a leafy vegetable cultivated for consumption, loses its commercial value due to the onset of bolting—the phenomenon of switching from vegetative to reproductive growth. In this study, we applied clustered regularly interspaced short palindromic repeats/(CRISPR)-associated system 9 (CRISPR/Cas9) technology to analyze AGAMOUS-like genes. We performed functional analysis of AGL19 and AGL24 genes related to bolting and flowering using CRISPR/Cas9-mediated Chinese cabbage transformation. Single-guide RNA (sgRNA) sequences were created with a low off-targeting probability to construct gene-editing vectors. Agrobacterium-mediated transformation was conducted, and tentative E0 AGL-edited lines were analyzed using molecular biotechnological methods. Two AGL19-edited lines with nucleotide sequence mutations in the target sequence of the AGL19 genes and four AGL24-edited lines with nucleotide sequence mutations in the target sequence of the AGL24 genes showed particularly late bolting compared to the inbred line ‘CT001.’ Generational progression using bud pollination obtained T-DNA-free E1 AGL-edited lines, which also showed late bolting. The loss of function of the AGL protein was caused by the occurrence of an indel mutation in the AGL19 and AGL24 genes, which results in an early stop codon. Furthermore, frameshift mutations led to structural changes and the introduction of an early stop codon in the AGL19 and AGL24 proteins. Our results indicate that CRISPR/Cas9-mediated editing of AGAMOUS-like genes results in a late-bolting phenotype and that CRISPR/Cas9 is a useful technology for analyzing gene function in Chinese cabbage (Brassica rapa ssp. pekinensis).  相似文献   

19.
Fusarium verticillioides and Fusarium subglutinans are important fungal pathogens of maize and other cereals worldwide. In this study, we developed PCR-based protocols for the identification of these pathogens targeting the gaoB gene, which codes for galactose oxidase. The designed primers recognized isolates of F. verticillioides and F. subglutinans that were obtained from maize seeds from several producing regions of Brazil but did not recognize other Fusarium spp. or other fungal genera that were either obtained from fungal collections or isolated from maize seeds. A multiplex PCR protocol was established to simultaneously detect the genomic DNA from F. verticillioides and F. subglutinans. This protocol could detect the DNA from these fungi growing in artificially or naturally infected maize seeds. Another multiplex reaction with a pair of primers developed in this work combined with a pre-existing pair of primers has allowed identifying F. subglutinans, F. konzum, and F. thapsinum. In addition, the identification of F. nygamai was also possible using a combination of two PCR reactions described in this work, and another described in the literature.  相似文献   

20.
CRISPR/Cas system has developed a new technology to modify target genes. In this study, CasΦ2 is a newly Cas protein that we used for genome modification in Arabidopsis and tobacco. PDS and BRI1 of marker genes were chosen for targeting. CasΦ2 has the function to cleave pre-crRNA. In the presence of 10 mM Mg2+ irons concentration, sgRNA3 type guided CasΦ2 to edit target gene and generate mutation, and a mutant seedling of AtBRI1 gene with an expected male sterile phenotype was obtained. In the process of tobacco transformation, the gene editing activity of CasΦ2 can be activated by 100 nM Mg2+ irons concentration, and sgRNA1 type guided CasΦ2 to edit target gene. Mutant seedlings of NtPDS gene with an expected albino were obtained. The results indicate that CasΦ2 can effectively edit target genes under the guidance of different sgRNA type in the presence of Mg2+ ions. Together, our results verify that the CRISPR/CasΦ2 system is an effective and precise tool for genome editing in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号