首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA条形码技术在肉品防欺诈鉴别中的应用   总被引:7,自引:3,他引:4  
以DNA条形码技术鉴别进出口监督抽检的鱼肉等水产制品的种类来源,用以判别其与申报或产品标签是否相符.分别提取鱼肉等样品的基因组DNA,以目前国际上比较公认的动物线粒体细胞色素氧化酶COⅠ基因通用引物进行PCR扩增.PCR产物经测序分析后,将得到的扩增片段序列与Genbank数据库进行序列比对,同时提交Barcoding Life DNA条形码数据库(BOLD)进行鉴定分析.本批次监督抽检的16份鱼肉、鱼丸等水产制品中除1份样品未能成功获得鱼肉COⅠPCR扩增外,其余15份样品均顺利得到种类来源鉴定,鉴定结果约有31.25%的样品与产品标签标示不符.作为一种简单、快速、有效的分子鉴定技术,DNA条形码可以直接应用于鱼肉等动物源性食品的种类鉴定.  相似文献   

2.
摘 要:目的 运用DNA条形码技术对常见石首鱼鱼胶进行物种鉴定。方法 通过对26份鱼胶样品基因组DNA提取,PCR扩增COI基因、测序,用BOLD物种鉴定系统,与数据库中已有鱼类序列进行比对分析,鉴定出各鱼胶的物种;根据Kimura双参数模型计算样品序列遗传距离,并将所得序列构建NJ和MP系统发育树,进行聚类分析。结果 26份鱼胶样品通过鉴定引物“Fish-F”、“Fish-R”均可实现扩增,条带清晰单一,扩增和测序成功率均为100%;BOLD鉴定结果显示,26份鱼胶样品中23份能够确定物种来源(相似性达98%以上),包括石首鱼科12属15种鱼类,且多数为外来物种,另外3份鱼胶可推测其近缘物种。此外,系统发育树聚类分析结果与物种鉴定结果一致。结论 目前石首鱼类鱼胶来源物种较多,且多为外来基原鱼种。DNA条形码技术与BOLD鉴定系统相结合,可对大部分鱼胶进行准确的物种鉴定。  相似文献   

3.
目的 探讨线粒体细胞色素b基因(cytochrome b, Cyt b)作为DNA条形码在鱼唇制品物种鉴定中的适用性。方法 对全国31个城市购买的252份鱼唇样品进行聚合酶链式反应(polymerase chain reaction, PCR)测序,同源基因比较分析,构建系统发育树,鉴定制作鱼唇产品的鱼种,并对其进行濒危评价分析。结果 成功鉴定250个样品,一致性物种基因序列相似性在99%以上,涉及8个鲨鱼物种,最多样品为大青鲨(Prionace glauca),占样品65.5%,其余还有镰形真鲨(Carcharhinus falciformis)、路氏双髻鲨(Sphyrna lewini)、锤头双髻鲨(Sphyrna zygaena)等7类鲨鱼物种。结论 Cyt b可以作为对鲨鱼物种进行鉴定的一种DNA条形码,在对鲨鱼种鉴定时可以使用Cyt b基因及细胞色素氧化酶亚基I基因联合鉴定条形码,为深加工海产品物种鉴定提供更多的技术支撑。  相似文献   

4.
The use of a DNA-based identification system (DNA barcoding) founded on the mitochondrial gene cytochrome c oxidase subunit I (COI) was investigated for updating the U.S. Food and Drug Administration Regulatory Fish Encyclopedia (RFE; http://www.cfsan.fda.gov/-frf/rfe0.html). The RFE is a compilation of data used to identify fish species. It was compiled to help regulators identify species substitution that could result in potential adverse health consequences or could be a source of economic fraud. For each of many aquatic species commonly sold in the United States, the RFE includes high-resolution photographs of whole fish and their marketed product forms and species-specific biochemical patterns for authenticated fish species. These patterns currently include data from isoelectric focusing studies. In this article, we describe the generation of DNA barcodes for 172 individual authenticated fish representing 72 species from 27 families contained in the RFE. These barcode sequences can be used as an additional identification resource. In a blind study, 60 unknown fish muscle samples were barcoded, and the results were compared with the RFE barcode reference library. All 60 samples were correctly identified to species based on the barcoding data. Our study indicates that DNA barcoding can be a powerful tool for species identification and has broad potential applications.  相似文献   

5.
由于石斛属植物种间、种内形态相似,地域分布范围广泛、杂交种众多,市场上混乱,现亟需一种简单、高效的鉴定方法对其进行准确地鉴定。DNA条形码技术利用标准的一个或多个DNA片段对物种进行鉴定,是近年来生物学研究的热点领域,也是生物学发展最迅速的方向之一。DNA条形码技术可以从分子水平弥补传统鉴定方法的一些不足。该技术具有良好的通用性,使得物种鉴定过程更加快速,已经广泛应用于石斛的鉴定研究中。本文综述了DNA条形码技术及其原理,同时讨论了基于核基因片段(ITS、ITS2)以及叶绿体基因片段(matK、rbcL、psbA-trnH)在石斛分类鉴定中的应用,以期为加大石斛分类鉴定的力度和精度,以及为DNA条形码技术在石斛分类鉴定领域拓展和应用提供一定的理论指导依据。  相似文献   

6.
DNA条形码COI序列在常见肉类鉴别中的应用研究   总被引:2,自引:1,他引:1       下载免费PDF全文
为了对常见的4种肉类及相关肉制品进行掺假鉴定,判别与产品标签是否相符,本研究以COI基因为靶基因,建立了4种动物源性食品DNA条形码鉴别技术。分别提取牛、羊、猪、鸭四大物种的基因组DNA为模板,以其COI基因的保守序列区设计6对通用引物,结合文献报道及数据库提供的7对通用引物进行PCR扩增,并将测序结果提交Gen Bank数据库Blast比对,评价不同DNA条形码的检测鉴别能力。筛选出COI-A为最优序列,在4个物种中扩增效率100%。对抽检的20个批次的肉加工品样品进行检测,鉴定结果约有90%的样品与产品标签标示的成分相符。其中1个批次的牛丸制品因肉类成分含量低未扩增成功,1个批次的牛丸制品检出鸭源成分,判定掺假。DNA条形码技术快速有效,本研究筛选的COI-A序列可直接用于牛、羊、猪、鸭及其肉制品的鉴定,并为其它常见动物源性食品的种类鉴定提供一定参考依据。  相似文献   

7.
胡冉冉  邢冉冉  王楠  葛毅强  陈颖 《食品工业科技》2019,40(10):145-151,157
DNA条形码技术(DNA barcoding)是一种新型高效的物种鉴别方法。本研究基于DNA条形码技术,以线粒体细胞色素氧化酶I基因(COI)和16S核糖体RNA(16S rRNA)基因作为靶基因对海参物种进行鉴别,结果表明COI基因或16S rRNA基因均能实现大部分海参的物种鉴定,部分样品需结合两个靶基因鉴定出来。将所建立的DNA条形码方法用于市售海参样品的物种鉴定,24份市售海参样品中10份市售海参样品的物种鉴定结果与标签名称相符,6份样品与标签名称不符,存在将低价海参品种标为高价海参的现象;其余8份样品的标签只有商品名但没有明确的物种信息,利用DNA条形码技术对其鉴定可得到明确的海参种名。本研究结果证实DNA条形码技术可应用于市售海参的物种鉴定,为海参的监管提供技术支撑。  相似文献   

8.
Accurate identification of seafood in the marketplace is an issue of international concern, due to high rates of market substitution of cheaper or more widely available species for expensive or high-demand species. Salmon samples from stores and restaurants throughout western Washington, USA were tested using DNA sequencing of a short section of the mitochondrial cytochrome c oxidase I (COI) gene (DNA barcoding) to identify Atlantic salmon substituted for Pacific salmon. Of 99 salmon samples, 11 (11%) were Atlantic salmon sold as Pacific salmon. More than 38% of restaurant samples were mislabeled to species, while only 7% of store samples were mislabeled. Market substitution rates were significantly greater in restaurants compared to stores, and consistently greater in winter compared to spring, although not significantly. The high market substitution rate in restaurants documents a pressing need for more monitoring and enforcement specifically in restaurants. DNA barcoding is a valuable tool for rapid and definitive authentication of salmon in the marketplace, and should be more widely adopted to discourage market substitution.  相似文献   

9.
DNA barcoding detects market substitution in North American seafood   总被引:4,自引:0,他引:4  
Seafood authentication and food safety concerns are a growing issue in today’s global marketplace, although traditional morphology-based identification keys and existing molecular approaches have limitations for species identification. Recently, DNA barcoding has gained support as a rapid, cost-effective and broadly applicable molecular diagnostic technique for this purpose. However, the maturity of the barcode database as a tool for seafood authentication has yet to be tested using real market samples. The present case study was undertaken for this reason. Though the database is undergoing continual development, it was able to provide species matches of >97% sequence similarity for 90 of 91 samples tested. Twenty-five percent of the samples were potentially mislabeled, demonstrating that DNA barcodes are already a powerful tool for the identification of seafood to the species level. We conclude that barcodes have broad applicability for authenticity testing and the phylogeographic patterning of genetic diversity can also inform aspects of traceability.  相似文献   

10.
目的 采用基于DNA条形码技术对深圳市售花胶鱼种进行鉴定与分析。方法 以细胞色素C氧化酶Ⅰ(cytochrome c oxidase, COⅠ)基因为目标基因,应用DNA条形码技术鉴别深圳各药房和超市零售花胶的种类来源。结果 94份花胶样品均扩增出特异性条带。根据BOLD系统鉴定结果统计,深圳地区市售花胶94份样品中,按来源鱼种区分,基原鱼种(鉴定到属)为尼罗尖吻鲈和尖吻鲈属占比29.79%,其次为苏里南犬牙石首鱼占比15.96%,以及双棘原黄姑鱼/褐毛鲿占比8.5%。按来源鱼种所属的科区分,石首鱼科共计41个,占比43.62%;尖吻鲈科共计28个,占比29.79%;鳕科共计7个,占比7.45%。结论 目前我国花胶基原鱼种以石首鱼科为主,外来基原鱼种增多。深圳市售花胶存在真伪混淆现象,DNA条形码技术可用于花胶的来源物种鉴定。  相似文献   

11.
The removal of morphological features during fish processing hinders identification to the species level, increasing the chances of species substitution and the mislabeling of marketed products. We used DNA barcoding to assess whether species substitutions occur in croaker (Sciaenidae) fillets labeled as “pescada branca” sold in the Brazilian Amazon, where two species are known under this vernacular name (Cynoscion leiarchus and Plagioscion squamosissimus). A 577-bp cytochrome C oxidase subunit I (COI) sequence was obtained from 137 fillets and compared with the sequences of whole Sciaenidae fish that were identified based on their morphology and the reference sequences of the BOLD and GenBank public databases. DNA barcoding was able to identify 90% of the samples analyzed to the species level, and the results showed a high rate of species substitution in the fillets labeled as “pescada branca”. The substitution rate was 100% if using the criterion that the fillets should be C. leiarchus and 76.6% if using the criterion that they should be P. squamosissimus. Additionally, the results show that “pescada branca” was replaced in most cases by species of lower commercial value, which clearly demonstrates economic fraud aimed at increased profits. Our data confirm that DNA barcoding is a sensitive and reliable tool that can be applied to authenticate processed fish.  相似文献   

12.
DNA条形码技术在深圳鱼肉制品鉴定中的应用   总被引:2,自引:0,他引:2  
王敏  刘荭  黄海  赵晓萌  石琼  何舜平  孙颖 《食品科学》2015,36(20):247-251
以线粒体细胞色素氧化酶亚基Ⅰ(COⅠ )基因为目标基因,应用DNA条形码技术鉴别深圳批发市场和超市零售鱼肉制品的种类来源,判别其产品标签是否正确。本研究调查的77 份鱼肉制品均能扩增出特异性条带,28 份样品与产品标签标示不符,“错贴”率高达36.36%,其中所有标示“龙俐鱼”的商品都是低价的“巴丁鱼”(Pangasianodon hypophthalmus)。DNA条形码技术可用于鱼肉制品的来源物种鉴定。  相似文献   

13.
目的 受经济利益驱动,鹿茸标签不符情况时有发生,损害消费者利益的同时,也给产业的发展带来了负面影响,探究鹿茸的鹿种鉴定方法为鹿茸市场监管提供技术支持。方法 本研究以线粒体细胞色素氧化酶I基因(Cytochrome oxidase I gene, COI)和线粒体细胞色素b基因(Cytochrome b gene , Cytb)为靶基因对鹿茸样品进行鉴定,并对两种基因的鉴别能力进行了比较。结果 发现COI存在无法鉴别梅花鹿和马鹿的情况,而Cytb可以将所有鹿茸鉴定至种水平。并将Cytb作为目标片段,建立了鹿茸中物种来源鉴定的DNA条形码方法。并利用该方法对市场上销售的53份鹿茸样品进行标签符合性鉴定。结论 进一步证实了使用Cytb的DNA条形码方法可以有效鉴定出市售鹿茸样品的物种来源。收集到的53份市售鹿茸样品中,仅有21份样品与标签标识物种相符;25份样品存在将低价鹿茸标为高价鹿茸的现象;7份样品缺少明确的物种信息。本研究结果可以为监管部门规范鹿茸产品标签标识提供技术支撑。  相似文献   

14.
The DNA barcoding approach was used for the species identification of 44 Indonesian commercial fishery products. Additionally, the intronless nuclear rhodopsin gene fragment (RH1) was added to the analysis to enable the identification of species not yet barcoded and possible hybrids. The 655‐bp cytochrome C oxidase subunit I (COI) gene fragment marker was successfully amplified and used to identify 86% of the total fish samples at the species level using the BOLD and BLAST public databases. Moreover, the RH1 marker was used to complete COI analysis. For a number of fish species, the COI sequences (six species) and RH1 sequences (eight species) were the first entries submitted to GenBank. This study demonstrated that COI barcoding is a promising tool for Indonesian fishery products and confirmed that it could be adopted in the future for regular seafood control as part of the Indonesian integrated food traceability system.  相似文献   

15.
DNA barcoding possesses advantages of high resolution, high sensitivity, and capability in capturing as much identity information as possible. However, highly varying sources of food materials and a complicated supply chain bring about challenge to the application of barcoding methods. In this study, different barcode systems were compared to establish a robust method for tracing animal species in food. Experiments on food samples from mammal, poultry, and fish proved that a mini barcode system targeting a 192 bp COI gene fragment was able to accurately identify both raw and highly processed animal food. In order to distinguish species in a mixed food sample, cloning technique was used by which as low as 10% target animal ingredient could be detected. Testing of marketed food products verified the capability of the mini barcoding method in identifying illegally claimed product.  相似文献   

16.
Food authenticity and safety are major concerns for researchers, consumers, and particularly the meat industry. Meat products are targets for species substitution and adulteration due to their market value. Presently, the demand for halal products is witnessing a substantial increase. Therefore, it is essential to use appropriate science-based methods for determining the species origin of halal meat. DNA barcoding is a useful technique for the molecular identification of biological specimens, and raw and processed foods. The potential of using DNA barcoding is increasingly applied as an authentication tool for halal animal and meat products. Our review will bring together all DNA-based techniques that have been developed for the authenticity of meat derived from halal and non-halal animals and also their derivatives. Additionally, the present paper will highlight the possibility of using the DNA barcoding approach for halal meat authenticity.  相似文献   

17.
随着我国进出口贸易的不断发展,进出口鱼类品种繁多,数量巨大。但部分国内外企业受高额利润驱使,以假充真、以劣充好事件时有发生,鱼类制品更是真伪难辨,掺假状况极其普遍。通过形态学和生物学方法已经不能满足对鱼类种属鉴定。近年来,随着分子生物技术的迅猛发展,分子检测技术在鱼类品种鉴定领域得到广泛应用。本文针对不同分子鉴定技术进行阐述,包括普通聚合酶链反应(polymerase chain reaction,PCR)技术、多重PCR技术、实时定量PCR技术、DNA条形码技术、环介导等温扩增检测技术(loop-mediated isothermal amplification,LAMP)、聚合酶链反应-限制性酶切多态性技术(polymerase chain reaction-restriction fragment length polymorphism,PCR-RFLP)以及随机扩增多态性DNA检测技术(random amplified polymorphic DNA),并根据不同检测技术的特点进行分析,为进出口鱼类鉴定提供技术支撑。  相似文献   

18.
Mislabelling in fish products is a highly significant emerging issue in world fish trade in terms of health and economic concerns. DNA barcoding is an efficient sequencing-based tool for detecting fish species substitution but due to DNA degradation, it is in many cases difficult to amplify PCR products of the full-length barcode marker (~650 bp), especially in severely processed products. In the present study, a pair of universal primers targeting a 198 bp sequence of the mitochondrial 16s rRNA gene was designed for identification of fish species in the processed fish products commonly consumed in Malaysia. The specificity of the universal primers was tested by both in-silico studies using bioinformatics software and through cross-reaction assessment by practical PCR experiments against the DNA from 38 fish species and 22 other non-target species (animals and plants) and found to be specific for all the tested fish species. To eliminate the possibility of any false-negative detection, eukaryotic endogenous control was used during specificity evaluation. The developed primer set was validated with various heat-treated (boiled, autoclaved and microwaved) fish samples and was found to show high stability under all processing conditions. The newly developed marker successfully identified 92% of the tested commercial fish products with 96–100% sequence similarities. This study reveals a considerable degree of species mislabelling (20.8%); 5 out of 24 fish products were found to be mislabelled. The new marker developed in this work is a reliable tool to identify fish species even in highly processed products and might be useful in detecting fish species substitution thus protecting consumers’ health and economic interests.  相似文献   

19.
目的 研究基于rpoC1序列分析,建立山药物种鉴定的新方法。方法 利用DNA条形码技术对收集到的7个山药样本提取基因组DNA,以rpoC1基因引物进行PCR扩增、测序,将所得序列在NCBI数据库进行Blast比对,同时从GenBank数据库下载薯蓣属、木薯属和番薯属rpoC1序列,应用MEGA7.0软件计算种内和种间的(K2P)遗传距离,并构建邻接(NJ)系统聚类树。结果 7个山药样本rpoC1基因获得成功扩增和测序。7个山药rpoC1序列及GenBank下载9个薯蓣rpoC1序列和2个木薯番薯rpoC1序列分析显示,山药样本最大种内K2P遗传距离0.009远远小于山药与木薯番薯的种间K2P遗传距离0.104~0.118,同时也小于山药与盾叶薯蓣和穿龙薯蓣的种间K2P遗传距离0.026~0.035,构建的系统发育树显示山药与盾叶薯蓣和穿龙薯蓣、木薯和番薯单独聚为一类。结论 rpoC1序列可为食用山药物种鉴定提供新的分子鉴定方法。  相似文献   

20.
In this study, DNA barcoding was applied to identify the distinct species of fish products in Guangzhou supermarkets and sushi restaurants in order to confirm whether products were correctly labeled. Samples were analyzed using mitochondrial cytochrome C oxidase subunit I (CO I) gene as the target. Our results showed that the CO I gene of all 139 samples examined was successfully amplified by PCR. When sequenced, 30 samples (21.58%) were mislabeled as the wrong species, 11 samples had insufficient information provided on the label to determine if the labeling was correct (7.91%), and four samples failed sequencing (2.88%). We also found that the use of proper labels for fish products in sushi restaurants was higher than that in supermarkets. As a simple, rapid, and efficient technology, DNA barcoding can be widely used for species identification of fish products. Our work shows that regulation of the labeling of fish products, as we evaluated in Guangzhou and other markets in China, is needed on a global scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号