共查询到17条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
基于HMM的说话人辨认系统及其改进 总被引:2,自引:0,他引:2
对基于隐马尔可夫模型(HMM)的说话人辨认系统进行了讨论,完成了系统设计。对系统中矢量量化这一关键性环节进行了改进,提出了一种新的基于遗传算法的码本生成方法。测试结果表明,改进后的系统具有较高的正确识别率,特别是在与文本无关的情况下。 相似文献
5.
基于码本的说话人自适应方法 总被引:1,自引:0,他引:1
本文提出了一种基于码本的说话人自适应方法.它可以将变换方法和Bayes估计法这两大类说话人自适应方法的优点有机的结合起来,既能实现快速的说话人自适应,还具有良好的一致渐进性.自适应过程可分为两个阶段:在第一阶段,用由大量参考说话人的语音码本构成的线性组合来逼近用户的语音码本.此时只需要很少的自适应训练数据就可以用基于Rosen梯度投影法的优化算法计算出线性组合中各码本的最佳权值.在第二阶段,码本的最佳线性组合被用作用户码本的先验估计值.随着更多自适应训练数据的获得,系统对用户码本进一步进行Bayes估计,从而可以实现累进的自适应.作者将该方法应用于说话人无关的连续汉语语音识别系统.一系列的对比实验表明该自适应方法很有前途. 相似文献
6.
7.
探讨了HMM(隐马尔可夫模型)在说话人识别领域中的应用,并对说话人确认系统中的关键问题-确认阈值的确定,提出了一种新的解决方法。实验结果表明,该方法较好地解决了不同说话人的确认阈值的确定问题。 相似文献
8.
9.
针对语音识别中快速说话人自适应问题,对已有的说话人支持权重算法进行改进,利用支撑向量机(Support Vector Machines,SVM)参与支持说话人选择过程,并采用最大后验概率(Maximum a Posteriori,MAP)代替最大似然(Maximum Likelihood,ML)准则进行支撑说话人权重的估算,最后对测试说话人进行线性组合。与现有的相关自适应方法相比,该算法能够有效提高自适应数据较少时的性能。实验结果表明,在仅有一句自适应语句的情况下系统汉字正识率从原有非特定人(Speaker Independent,SI)系统的45.67%到58.05%,相对原有说话人支持权重算法提高4.67%。 相似文献
10.
该文提出一种基于最大似然可变子空间的说话人自适应方法。在训练阶段,对训练集中的说话人相关模型参数进行主分量分析,得到一组说话人基矢量;在自适应阶段,通过最大似然准则选取与当前说话人相关性最大的基矢量子集,进而将新的说话人相关模型限制在这组基矢量所张成的说话人子空间中,通过求解每一个基矢量对应的系数从而进行说话人自适应。与经典的基于子空间的说话人自适应方法不同,该文中的说话人子空间是在自适应阶段动态选取的,所需要估计的参数更少,在少量自适应数据下可以得到更稳健的自适应结果。在基于微软语料库的连续语音识别自适应实验中,给定极少量自适应数据(小于5 s),在有监督和无监督条件下,该文方法均优于经典的本征音自适应方法和基于最大似然线性回归的方法。 相似文献
11.
循环相关匹配滤波器设计 总被引:10,自引:0,他引:10
在谱相关分析的基础上,讨论了对循环平稳信号进行最佳滤波的问题,推导得到了基于最大输出信噪比准则的循环相关匹配滤波器的解析表式.然而,由于该滤波器性能与所选取的循环频率是相关的,单循环频率循环相关匹配滤波器存在固有的缺陷-信号能量利用不充分.为此,研究了多循环频率循环相关匹配滤波器组的设计方法,在最大输出信噪比准则约束下确定了滤波器组的优化结构.仿真实验比较了谱相关分析方法和循环相关匹配滤波方法,对调幅信号和BPSK信号的仿真实验结果证实了文章理论分析得到的结果. 相似文献
12.
13.
快速说话人自适应算法在非特定人连续语音识别的应用中有重要意义.现在流行的自适应算法多数只考虑均值的自适应.本文提出的自适应算法可以快速的对协方差矩阵进行自适应.该算法是用高斯相似度度量协方差矩阵间的距离,并由此测度建立了反映协方差矩阵结构关系的二叉决策树.树的每个中间节点包含一个类质心.在决策树基础上,训练多个与特定人模型相关的类质心.自适应时,通过对这些类质心进行线性插值得到自适应的协方差矩阵.实验结果表明,该方法能够在仅有一句自适应数据的情况下,使系统误识率由29.49%下降到27.55%. 相似文献
14.
15.
本文简要讨论了在基于HMM的连续语音识别系统中怎样选取基本语音单元的问题,介绍了在欧洲Polyglot课题下在法国LINSI-CNRS建立的基于上下文无关音素HMM。然后,本文详细给出了利用左或右上下文相关音素HMM,作者对上述系统改进后进行的连续语音识别,有用美国语音库DARPA-RM1,在不考虑句法信息时,我们获得了连续时词识别率大约3-10个百分点的明显提高。实验是在法国LIMSI-CNRS 相似文献
16.
基于连续HMM的孤立语音鲁棒性识别方法 总被引:5,自引:1,他引:5
对于基于连续稳马尔可夫模的语音识别系统,为了提高系统在环境噪声下的鲁棒性,本文提出了一种能有效抑制加性平稳噪声和通道卷积噪声的相对自相关序列的Mel倒谱参数(RAS_MFCC+△RAS_MFCC),进行特征参数级的去噪,明显地改善了系统的噪声鲁棒性。 相似文献