首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
基于元胞自动机法和有限差分法(CA-FD)建立ULCB钢熔池凝固枝晶生长的数值模型,应用该模型模拟ULCB钢埋弧焊对接接头熔池凝固时,初生柱状晶结晶转变为次生等轴晶结晶过程中的枝晶生长与溶质浓度的变化。结果表明:焊接熔池凝固开始时,初生柱状晶间竞争生长激烈,主干枝晶长大方向同于温度梯度较大的方向,且生长速度较快;其他方向受抑制较严重,但在竞争中慢速持续生长;同时,在初生枝晶与初生枝晶臂之间、初生柱状晶与次生等轴晶之间的残余液相中,溶质积累,凝固过程结束后形成严重的枝晶偏析。  相似文献   

2.
通过TIG电焊机对MB8镁合金板材进行焊接,研究MB8镁合金母材及其焊接接头的显微组织和力学性能,分析焊接接头的硬度分布和应力集中系数。试验结果表明:接头焊缝区、热影响区、母材区的组织分别为粗大铸造柱状晶、大小不一的等轴晶和细小均匀的晶粒;焊缝区硬度值最低,母材区硬度值变化幅度较小,最高达48.2HV;TIG焊接接头的力学性能远低于母材,接头焊缝及近缝区晶粒粗大,焊趾处存在应力集中,同时伴有焊接残余拉应力,这些因素是导致焊接接头力学性能降低的主要原因;母材及焊接接头的拉伸断口均呈现撕裂棱形貌,表现为脆性解理断口。  相似文献   

3.
通过超声冲击试验和超声疲劳实验来探究超声冲击对MB8镁合金焊接接头超高周疲劳性能的影响。结果表明:由S-N曲线可知,在106~109寿命区间内,冲击态试样的疲劳性能要高于焊态。在应力为40 MPa载荷下,焊态试样的疲劳寿命为1.86×10~7,而冲击态试样的疲劳寿命为9.77×10~7,提高425%,说明超声冲击可以明显提高MB8镁合金焊接接头的疲劳寿命。裂纹都是萌生于焊趾区,试样的断口存在6个不同区域:疲劳源区、初始扩展区、过渡扩展区、粗晶扩展区、柱状晶扩展区、瞬断区。  相似文献   

4.
为提高镁合金焊接接头的超高周疲劳寿命及其安全可靠性,采用机械打磨除去MB8镁合金焊接接头余高,利用超声疲劳试验机来探究MB8镁合金焊接接头超高周疲劳性能。结果表明:MB8镁合金焊接接头的S-N曲线在2.0×10~8周左右时会出现平台,说明其存在疲劳极限;当疲劳寿命小于2.0×10~8周,S-N曲线呈连续下降趋势,疲劳寿命随着载荷的降低而增加;疲劳失效试样都断裂在试样的中间焊缝部位,疲劳断口可以分成疲劳源区,柱状晶扩展区、过渡扩展区、粗晶扩展区、瞬断区5个区域。  相似文献   

5.
用ER4043焊丝和ER5356焊丝对6061-T6薄板铝合金双脉冲MIG焊缝组织与性能进行研究。结果表明:用ER5356焊丝焊接时,6061-T6铝合金接头的屈服、抗拉强度及断后伸长率均高于以ER4043焊丝作为填充的焊接接头,前者的焊接系数为0.72,而后者仅为0.65;两者焊接接头的显微硬度均以焊缝为中心近似对称分布,最低值出现在接头热影响区中的淬火区,ER5356焊丝焊接时接头的硬度较ER4043焊丝高;以ER5356焊丝作为填充时,6061-T6铝合金的焊缝为细小的铸态组织,枝晶相对较细,而用ER4043焊丝焊接时,焊缝为粗大的铸态组织,且枝晶较发达,两者熔合区的近缝侧为柱状晶,靠近热影响区一侧为细小的等轴晶组织。与原始母材相比,热影响区的晶粒产生一定程度的粗化。两者淬火区的晶粒内虽然都产生少量的二次相,但以ER5356焊丝作为填充时淬火区中的二次相较细小,且呈弥散分布。  相似文献   

6.
2,4-二硝基苯甲醚(DNAN)/奥克托今(HMX)熔铸炸药在烤燃过程中会发生DNAN熔化、HMX晶型转变等特征现象。为研究其烤燃响应特性,发展了DNAN熔化-化学反应动力学模型,结合HMX四步化学反应动力学模型,从宏观和细观尺度研究了DNAN基熔铸炸药的熔化、晶型转变及点火响应。宏观计算结果表明:DNAN在约377.00 K熔化,HMX在约450.00 K晶型转变,点火温度为531.34 K,点火位置位于装药上下端面与侧面夹角处环形区域,计算点火时间与实验结果误差为0.5%。基于宏观点火区域进行细观计算,发现点火位置位于HMX炸药晶粒,并得到DNAN熔化、HMX晶型转变等细观分布演化规律,即不同时刻,液相DNAN统计分布呈U形分布,δ-HMX近似正态分布。表明DNAN基熔铸炸药烤燃宏细观数值计算对深入理解含能材料的热点火机理具有重要意义。  相似文献   

7.
针对钻地弹攻击地下深层目标过程中,战斗部离散颗粒增强复合材料装药提前起爆现象进行高g值加载条件下的损伤形式研究。基于一级轻气炮,应用激光测速系统测量试件击靶前速度,压电传感器监测试件击靶端面应力状态,在Taylor冲击加载下的损伤特性进行试验,分析冲击载荷压力对离散颗粒增强复合材料宏观损伤特性的影响及其细观损伤模式及机理。结果表明:随冲击载荷压力不断增大,细观损伤模式为晶体颗粒表面与黏结剂间的剪切脱黏、孪晶带、穿晶断裂以及黏结剂劈裂等,细观损伤裂纹的加剧引起宏观裂纹产生,裂纹扩展断裂从而导致试件宏观损伤。晶体颗粒剪切脱黏强度模型和裂纹扩展断裂强度模型计算与试验结果基本吻合,为离散颗粒增强复合材料细观损伤机理研究提供重要参考依据。  相似文献   

8.
GH3039脉冲激光焊接头组织性能研究   总被引:1,自引:0,他引:1  
采用脉冲激光焊接工艺对GH3039镍基高温合金进行实验研究。焊接工艺参数选择适当时,可以获得较好的焊接接头。试验接头参数为:工作电流240 A,脉宽6 ms,频率14 Hz,焊接速度105 mm/min,离焦量3 mm,气流量3 L/min。通过硬度测定,金相观察,拉伸试验对焊缝组织和形貌进行观察和分析。结果表明,焊缝组织主要为奥氏体基体,中心区域为细小的等轴晶,边缘为柱状晶,焊缝中心的硬度高于母材硬度,焊缝组织中的层状形貌是由脉冲激光间断作用形成。  相似文献   

9.
采用FSW和MIG焊接方法对AZ31B变形镁合金进行焊接试验。结果表明:FSW接头的焊核区受摩擦热、机械搅拌和热塑流动的综合作用,形成粒度细小、晶界明显的等轴再结晶晶粒,平均直径约为5μm;MIG接头的焊缝区在电弧的高温热作用和急速冷却作用下,形成晶界明显的等轴晶,平均尺寸约为20μm;FSW焊接接头力学特性优于MIG,平均抗拉强度达到249.8 MPa,为母材抗拉强度的96.1%,平均伸长率为11.6%;两种接头的断裂面与拉伸方向的夹角约为45°,FSW接头断裂位置在热影响区,断面上有尺寸相差很大的韧窝,而MIG多出现在焊缝区,断面上有韧窝和撕裂棱。  相似文献   

10.
室温下对TA2/Q345爆炸复合板进行静态拉伸和动载拉-压高周疲劳试验,分析其拉伸和疲劳力学性能;用金相显微镜、扫描电镜对TA2/Q345复合板界面金相组织和拉伸、疲劳断口进行分析.结果表明:结合界面至基材Q345显微组织演变为等轴细晶区、纤维状变形组织区、扭曲原始组织、原始组织区(铁素体和珠光体条带);结合界面至覆材TA2表面,出现孪晶组织.拉伸断口为韧性断裂,结合界面波状分离;疲劳断口为准解理断裂,疲劳断裂的应力远低于静态拉伸.  相似文献   

11.
薄壁铜铝管电阻焊焊接界面的微观结构研究   总被引:1,自引:0,他引:1  
利用SEM、EDS等技术对电阻焊薄壁铜铝管焊接界面进行研究,并结合Cu-Al二元相图进行界面分析。研究结果表明在铜铝连接管的焊接界面处,铜与铝进行原子的互扩散,且铜原子向铝侧扩散的深度比铝原子向铜侧扩散的深度要大。对界面进行背散射电子分析和能谱分析,发现界面存在柱状晶形貌的CuAl2相和呈灰白相间的层片状的α-Al与CuAl2的共晶。讨论柱状晶与共晶组织的形成与性能,并分析其对接头性能的影响。  相似文献   

12.
焊接工艺对低合金海洋用钢焊接接头耐蚀性的影响   总被引:2,自引:0,他引:2  
采用不同焊接工艺制备10CrNiSiMnCu钢焊接接头的腐蚀试样,通过室内挂片和电化学测试,探讨焊接工艺对焊接接头腐蚀性能的影响。分析结果认为,接头各区夹杂物、化学成分和微观组织的差别,是导致接头各区耐蚀性差异和不同种类接头耐蚀性差异的重要影响因素;熔合区由于成分、组织的不均匀,微观缺陷和焊接残余应力的存在等促使该区容易发生沟槽状腐蚀;焊接过程中输入的线能量较高,是造成埋弧焊接头的耐腐蚀性比其手工焊接头好的主要原因。  相似文献   

13.
以Al-Mg系6061-T6铝合金板材作为研究对象,通过拉伸断裂测试实验分析电阻点焊接头的断裂特点,并分析其点焊缺陷。结果表明,结合面断裂主要沿熔核中心断开,且接头断口表面较为平整,具有明显的金属光泽。在断裂过程中,电阻点焊接头的断裂方式由韧性断裂逐步过渡成脆性断裂,熔核组织中的等轴晶在拉伸力作用下发生无规律的生长会导致微细裂纹的增加;结合线伸入点处存在碳、氧等杂质元素,说明造成结合线伸入缺陷的主要原因是在焊接过程中氧化物夹杂物进入到熔核。因此,焊接前对试样进行表面氧化处理是很有必要的。  相似文献   

14.
钢-铝爆炸复合接头材料的腐蚀与防护   总被引:3,自引:0,他引:3  
研究了Q2 35钢 -铝合金爆炸复合接头在 3 5 %NaCl溶液中的腐蚀特性。结果表明 ,复合接头区在 3.5 %NaCl溶液中发生了电偶腐蚀 ,加速了铝合金的腐蚀破坏。这类腐蚀过程较为复杂 ,接头区存在电偶腐蚀 ,由于爆炸时强大的冲击力使得复合接头区的组织发生强烈的塑性变形和熔化 ,导致该区组织在物理、力学、电化学等方面的不均匀性 ,使得腐蚀情况更为严重 ,发生电偶腐蚀和晶间腐蚀。针对这类腐蚀 ,提出了保护措施  相似文献   

15.
用熔化极气体保护焊获得7B52-T6叠层铝合金焊接接头,研究接头的力学性能、显微组织、疲劳损伤行为。结果表明:接头各区由于成分和经历热循环不同,组织、性能存在差异,热影响区发生再结晶和不完全结晶,熔合区有部分细晶区,焊缝中心为等轴晶组织。接头抗拉强度为246 MPa,试样断裂于焊缝区,接头显微硬度分布不均匀,从焊缝中心到母材,显微硬度整体上升,热影响区硬度波动大。接头S-N曲线为σ=533.655-66.247lg N,中值疲劳强度为116 MPa,疲劳裂纹起源于接头表面气孔和距表面0.1 mm的内部气孔处,疲劳扩展区平坦,瞬断区的断裂方式为准解理断裂。  相似文献   

16.
化学气相沉积钨的组织与力学性能研究   总被引:1,自引:0,他引:1  
用扫描电镜上的EBSD装置研究化学气相沉积法制备的高纯钨的晶体取向,化学气相沉积钨具有{110}〈001〉取向织构;用电子万能试验机和分离式霍普金森杆(SHPB)研究纯钨的准静态(10-3s-1)和动态(2000~5000s-1)压缩力学性能,并与等轴晶重熔钨进行对比分析,沉积钨的屈服强度由静态时的1350MPa上升到动态时的2000MPa以上,是应变率敏感材料,等轴晶纯钨的静动态屈服强度高于柱状晶沉积纯钨,柱状晶沉积纯钨有明显的应变硬化效应。沉积钨柱状晶组织的塑性变形方式除滑移外,还有大量的孪晶产生。  相似文献   

17.
分别采用卷制工艺、冲压工艺和机械加工工艺制备铝合金轮毂的轮缘、轮辐和轮毂,将其焊接成铝合金轮毂,进行检验和测试。结果表明:705合金在退火、固溶处理状态下都有软化倾向,可进行后续的轮缘卷制和轮辐冲压;焊接接头的母材热影响区晶粒粗大,焊缝区为等轴晶组织;焊缝区的断裂方式为延性断裂;铝合金轮毂的显微组织致密,纵向组织中未溶解相沿板材轧制方向分布且结构明显,横向组织中各向异性较小;铝合金轮毂的抗拉强度Rm为400~515 MPa、屈服强度Rp0.2为330~450 MPa、伸长率A为9%~17%。  相似文献   

18.
为探究多晶锗纳米尺度的塑性切削机制和力学特性,采用分子动力学方法(MD)模拟金刚石刀具纳米切削多晶锗过程,对材料的晶体结构,位错分布及演变,应力传导和切削力波动规律进行详细分析;并研究不同切削参数对加工过程的影响。结果表明:晶体结构的非晶转变和晶界与晶体滑移,位错等缺陷相互作用,导致切削力周期性波动;切削过程中非晶体区沿晶界扩展,但晶界阻碍非晶体区跨晶界扩展;位错仅存在晶界附近,而位错类型和数量随晶界处的原子运动和破坏程度发生改变,材料塑性去除主要由晶粒内部的非晶转变和晶界的位错运动所致;晶界的等效应力比晶粒大,分布和传导方向与非晶体原子的一致;切削速度增加使切削区温度上升、应力和切削力减小;切削深度增加易使缺陷原子数量上升,位错线长度降低。通过Diamond结构多晶的研究结果证实多晶锗切削仿真的正确性。  相似文献   

19.
韩龙  许进升  周长省 《含能材料》2016,24(10):928-935
为研究HTPB/IPDI(hydroxyl-terminated polybutadiene/isophorone diisocyanate)复合固体推进剂细观界面性能随加载速率的变化规律,基于分子动力学算法生成了HTPB/IPDI复合固体推进剂的细观颗粒填充模型。颗粒与基体间粘接作用通过结合粘弹性标准机械单元及指数型率无关内聚本构所构建出的率相关内聚力模型模拟。通过HTPB/IPDI基体胶片的应力松弛试验得到细观模型中基体材料的松弛参数。基于模型对HTPB/IPDI推进剂在不同加载速率下(0.1,5,20 mm·min~(-1))的宏观力学响应进行仿真计算。利用数值仿真结果与HTPB/IPDI推进剂单轴拉伸试验结果曲线,通过Hooke-Jeeves优化算法对率相关内聚力模型参数进行反演分析,得到了优化后的界面参数数值。利用所建立的模型对50,100 mm·min~(-1)加载速率下的HTPB/IPDI复合固体推进剂材料的宏观力学行为进行预测。结果显示,预测结果与实际试验结果较为一致。  相似文献   

20.
以不同泡沫金属为夹层进行自冲铆接头疲劳试验,采用二参数威布尔分布检验疲劳数据,并拟合各组试样的S-N曲线。用扫描电子显微镜观测不同疲劳区接头的典型疲劳断口,分析裂纹萌生形式,研究接头在不同应力下的失效机理。结果表明:以泡沫镍为夹层的接头疲劳寿命明显优于泡沫铁镍为夹层的接头;泡沫镍在微动过程中迁移流动能力较强,在磨屑床中起第三体润滑承载作用;接头的疲劳裂纹萌生于接头的铆接点下板或铆孔中心的下板一侧区域;铝合金疲劳源区晶粒滑移呈不均匀性,疲劳裂纹萌生于金属夹杂物、第二相处;接头的裂纹扩展区可观察到大量密集分布的疲劳条带,并伴有较深的二次裂纹;在瞬断区,铝合金自冲铆接头呈韧窝形貌。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号