首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Cap Bon region of northeastern Tunisia is part of a young continental margin that presents a thick column of sediments deposited mainly during Cretaceous and Miocene extended tectonic episodes. This sedimentary package is characterised by broad synclines alternating with NE–SW trending anticlines, and is affected by numerous NE–SW, NW–SE and E–W striking faults. Oligo-Miocene sandstones constitute the most important potential reservoir rocks in the region.The distribution of subsurface temperatures in the Cap Bon basin reflects local groundwater circulation patterns and correlates with the location of known oil and gas fields. The results of geothermal studies could therefore prove useful in the search for new hydrocarbon resources in the region. Subsurface temperatures were measured in deep oil exploration and shallow water wells. Local geothermal gradients range from 25 to 35 °C/km, showing higher values in the Korbous and Zennia areas, which correspond to zones of groundwater discharge and convergence in the Oligo-Miocene aquifer system, respectively.Analysis of thermo-hydraulic and geochemical data relative to the thermal springs in the Korbous region along the Mediterranean coast has made a useful contribution to geothermal prospecting for potential deep reservoirs. Positive geothermal gradient anomalies correspond to areas of ascending thermal waters (i.e. discharge areas), whereas negative anomalies indicate areas of infiltrating colder meteoric waters (i.e. recharge areas). The zones of convergence of upward-moving water and groundwater may be associated with petroleum occurrences.  相似文献   

2.
《Geothermics》1998,27(2):211-233
In order to assess the geothermal potential in the Maghrebian region, several studies have been undertaken in the three countries concerned, Morocco, Algeria and Tunisia, during the past decade. Research programmes have considered the surface evidence (thermal springs) and underground thermal information from deep and shallow wells. The main chemical characteristics of the sampled thermal springs and the results of the application of geothermometers as result from these studies are presented. Of the 238 inventoried thermal springs, 169 have been selected, on the basis of complete water analyses and acceptable ionic balances. Measured temperatures range from 22.5 to 98°C, thermal indexes from 0.5 to 78°C and salinities from 0.13 to 52.5 g/L. Most studied springs are sodium-chloride type waters. These basic data allow identification of the main thermal anomalies in the Maghrebian zone, which are located in regions of the Libyan-Tunisian, Algerian-Moroccan and Algerian-Tunisian frontiers, of northern Tunisia, the Eastern Rif and the northern part of the Saharan Atlas.Several chemical geothermometers have been applied to selected springs: NaK, NaKCa, NaKCaMg, Na/Li, Mg/Li, K2/Mg, quarts, chalcedony (Fournier) and chalcedony (Arnorsson). The NaK, NaKCa, NaKCaMg, Na/Li and Mg/Li geothermometers seem to give unreliable results, while K2/Mg and silica temperatures are apparently reasonable. However, dissolved silica seems to be governed by quartz solubility for some thermal springs and by chalcedony solubility for others. The results are tentatively compared with known geothermal gradients and geological features.  相似文献   

3.
《Geothermics》2001,30(2-3):349-390
Recent volcanism, high heat flow (4 HFU or 167 mW/m2), and high conductive geothermal gradients (up to 120°C/km) indicate that heat from a shallow silicic intrusion in the Clear Lake region is largely being dissipated by conduction. The Geysers area has the highest heat flow in the region, consistent with the presence of shallow convective heat transport within the vapor-dominated geothermal system. Thermal modeling of the Clear Lake magmatic-hydrothermal system based on petrologic and geophysical constraints provides a test of petrologic models, and yields insight into the relationships between observed thermal gradient and magma chamber size, abundance, and emplacement history in the crust. A user-interactive two-dimensional (2-D) numerical model allowing for complex host rocks and multiple emplacements of magma was developed to simulate conductive and convective heat transport around magma bodies using a finite-difference approach. Conductive models that are broadly consistent with the petrologic history and observed thermal gradients of the Mt. Konocti and Borax Lake areas imply a combination of high background gradients, shallow magma bodies (roofs at 3–4 km), and recent shallow intrusion not represented by eruption. Models that include zones of convective heat transport directly above magma bodies and/or along overlying fault zones allow for deeper magma bodies (roofs at 4–6 km), but do not easily account for the large areal extent of the thermal anomaly in the Clear Lake region. Consideration of the entire Clear Lake magmatic system, including intrusive equivalents, leads us to conclude that: (1) emplacement of numerous small and shallow silicic magma bodies occurred over essentially the entire region of high heat flow (about 750 km2); (2) only a very small fraction (much less than 10%) of the silicic magma emplaced in the upper crust at Clear Lake was erupted; (3) high conductive thermal gradients are enhanced locally by fault-controlled zones of convective heat (geothermal fluid) transport; and (4) except for the Mt. Hannah and possibly the Borax Lake area, most of the silicic magma present in the upper crust has solidified or nearly solidified. These bodies are currently difficult to distinguish from surrounding hot basement rocks dominated by graywacke using geophysical methods. The Clear Lake region north of the Collayomi fault is one of the best prospects for hot dry rock (HDR) geothermal development in the US, but is unlikely to provide significant development opportunities for conventional geothermal power production. Modeling results suggest the possibility that granitic bodies similar to The Geysers felsite may underlie much of the Clear Lake region at shallow depths (3–6 km). This is significant because future HDR reservoirs could potentially be sited in granitoid plutons rather than in structurally complex Franciscan basement rocks.  相似文献   

4.
Overlying most of the Wairakei–Tauhara geothermal system is a sequence of shallow aquifers. Some of these are groundwaters heated by fluids escaping from the deep geothermal reservoir, others are cold; some are extensive and confined, others are perched, unconfined and of limited extent. Water levels of some of the shallow aquifers have declined at various times throughout the history of geothermal development. One of the mechanisms causing the observed changes is an increase in groundwater downflow into depressurizing steam zones. This occurs through natural fractures that once channelled the ascent of two-phase fluids. Another important mechanism is internal downflow within boreholes connecting permeable aquifers that were otherwise hydrologically separated. These cool downflows have had a significant impact on the deeper reservoir, and also affect the discharge characteristics of surface thermal features. However, in the Southern Tauhara sector, outflows of dilute chloride fluid from shallow thermal aquifers have not been affected by the deep pressure drawdown. This could be attributed to liquid or two-phase upflow continuing to recharge the chloride component in the south, or to significant quantities of residual chloride in a large geothermally heated aquifer still masking recharge depletion that has occurred during the last 50 years.  相似文献   

5.
Since Roman time, the heat produced by Neapolitan volcanoes was an appeal for people living in and outside the area, for the fruition of the famous thermal baths. This very large area, which spans from Campi Flegrei and Ischia calderas to Somma-Vesuvius volcano, is characterized by high temperature at shallow depth and intense heat flow, and is yet utilized for the bathing and spa treatment industry, while only in the middle of the 20th century a tentative of geothermal exploitation for energy production was performed. Pioneering researches of geothermal resource were carried out in Campanian region since 1930, until 1985, during which a large amount of geological data were collected. In this paper, we make for the first time a review of the history of geothermal explorations in the active Campanian volcanic area. By the analysis of a great amount of literature data and technical reports we reconstruct the chronology and the main information of the drillings performed since 1930 by the SAFEN Company and successively in the framework of the ENEL-AGIP Joint Venture for geothermal exploration. The available data are utilized to correlate the temperatures measured within the deeper wells with the possible sources of geothermal heat in the shallow crust, down to about 8-10 km of depth. Finally, we assess the geothermal potential of the hottest areas, Ischia Island and Campi Flegrei, which have shown the best data and favorable physical conditions for a reliable, and cost-effective, exploitation for thermal and electric purposes.  相似文献   

6.
In this paper a brief review is given of the dependence of the oxygen isotopic fractionation of the sulfate ions-water system on temperature and the pH. From the available experimental data some relationships have been elaborated, which show that the isotopic exchange time is strongly temperature and pH dependent. The times for 97 per cent of isotopic exchange (near equilibrium conditions) at pH 7.0 are about 9 years at 200°C and 0.6 years at 330°C, while at pH 3.8 and at the same temperatures the times of exchange are 1.5 years and 0.08 years respectively. Thus, at the temperatures and pH of geothermal reservoirs the sulfate could be in isotopic equilibrium with environmental water, and the oxygen isotopic fractionation factors of sulfate-water geothermal pairs, being temperature dependent, can be used as geothermometers.Also reported here are some results on the O18 content of sulfate-water pairs from some wells on the edge of and outside the Larderello geothermal basin. The estimated isotopic temperatures are not very significant for the deep reservoir temperatures due to the geological features of the Larderello area which show important outcropping and deep anhydrite layers. Furthermore, as regards the wells outside the Larderello basin (Travale wells) some mixing of the geothermal water with colder underground water has been proved. However, the isotopic temperatures are generally higher than those measured at the well-head, and the highest ones are close to those estimated for the geothermal reservoir.In other geothermal areas more convenient from a geological point of view, the O18 content of the sulfate-water pair can be a useful and accurate thermometer.The O18/O16 ratios of several other sulfates (surface and deep anhydrite samples, sulfate ions in thermal springs) from the same area were also determined and differ substantially from borehole sulfate values.  相似文献   

7.
《Geothermics》1998,27(3):361-378
The results of the exploration of the San Jacinto-Tizate geothermal field during 1992–1995 included geological, hydrogeological and geophysical investigations (magnetotelluric, frequency soundings, subsurface temperature, and soil-gas surveys), and the drilling and testing of seven deep wells (728–2339 m). The geothermal field, located within a composite volcano-tectonic depression, can be divided into two main areas: San Jacinto and Tizate. The San Jacinto area shows evidence of a high-temperature (250–300°C) fossil geothermal system that at present has reservoir temperatures in the 180–190°C range. In the Tizate area there is an active geothermal system with temperatures of 250–285°C. An upflow zone with an excess pressure gradient exists in the central part of this area. Two hydraulically connected reservoirs exist: a shallow one at 550–1200 m depth, and a deeper one below 1600m. Two-phase conditions exist in the upper part of the shallow reservoir. Production tests demonstrate the commercial potential of both Tizate reservoirs.  相似文献   

8.
Hydrogeochemistry and geothermal characteristics of the Tertiary White Lake basin are described in order to provide constraints on the hydrogeology and thermal regime of the basin. The basin can be divided into three flow subsystems on the basis of chemical and isotopic variations. The groundwaters evolve chemically from young Ca–Mg–HCO3 type waters in the shallow surficial sediments to Na-dominated waters in the deeper intermediate system. Surface waters and shallow groundwaters collected from wells completed in overburden have undergone extensive evaporation as evidenced by their enriched δ18O and δ2H composition. Minor evaporation identified in the isotope composition of groundwater from domestic wells completed in bedrock, as well as from springs, suggests a local to intermediate origin for these waters, and perhaps mixing with shallow evaporative waters. In contrast, the uniform isotope signatures of deep basin waters measured both spatially and vertically suggest recharge at higher elevations, and a much deeper circulation system that is essentially isolated from the shallow subsurface. Chemical geothermometry indicates that spring waters and bedrock well waters have equilibrated at temperatures of less than 20 and 60°C, respectively. Groundwaters encountered by deep diamond drill holes, with equilibration temperatures of less than 80°C, are representative of intermediate flow systems, and may serve to modify the heat flow regime in the basin. Regional groundwater flow within the basin is complex due to numerous faults that exert a strong influence on fluid circulation patterns. Transport of heat in the subsurface, which has resulted in variations in the measured thermal gradients across the basin, occurs either at depths greater than those investigated in this study or has been significantly influenced by the circulation of cooler groundwater in the central part of the basin.  相似文献   

9.
Conceptual modeling and predictive mapping of potential for geothermal resources at the regional-scale in West Java are supported by analysis of the spatial distribution of geothermal prospects and thermal springs, and their spatial associations with geologic features derived from publicly available regional-scale spatial data sets. Fry analysis shows that geothermal occurrences have regional-scale spatial distributions that are related to Quaternary volcanic centers and shallow earthquake epicenters. Spatial frequency distribution analysis shows that geothermal occurrences have strong positive spatial associations with Quaternary volcanic centers, Quaternary volcanic rocks, quasi-gravity lows, and NE-, NNW-, WNW-trending faults. These geological features, with their strong positive spatial associations with geothermal occurrences, constitute spatial recognition criteria of regional-scale geothermal potential in a study area. Application of data-driven evidential belief functions in GIS-based predictive mapping of regional-scale geothermal potential resulted in delineation of high potential zones occupying 25% of West Java, which is a substantial reduction of the search area for further exploration of geothermal resources. The predicted high potential zones delineate about 53–58% of the training geothermal areas and 94% of the validated geothermal occurrences. The results of this study demonstrate the value of regional-scale geothermal potential mapping in: (a) data-poor situations, such as West Java, and (b) regions with geotectonic environments similar to the study area.  相似文献   

10.
Forecast and evaluation of hot dry rock geothermal resource in China   总被引:1,自引:0,他引:1  
Utilizing information from plate tectonics characteristics, volcanic activities, and geothermal anomaly, this paper identifies areas where hot dry rock (HDR) may exist as potential geothermal resource in China. Further investigations are also carried out in the paper based on results from regional tectonics, volcanic geology and lithology, as well as data from geothermal displays, geochemistry, geophysics, and shallow borehole temperature measurements. The study reveals several promising areas of HDR geothermal resource in China, including Tengchong of Yunnan province, Qiongbei of Hainan province, Changbaishan of Jilin province, Wudalianchi of Heilongjiang province, and the Southern Tibet area. A 3D static heat conduction model was developed to study the underground temperature gradient characteristics of the Rehai geothermal field in Tengchong and the Yangbajing geothermal field in Tibet. The model adopted is a geological block 10 km deep from the ground surface and 50 km wide in each of the horizontal directions (2500 km2 area). The numerical simulation results in evaluations on the quantities of the HDR geothermal resource in Rehai and Yangbajing geothermal fields. The paper shows that there is abundant HDR geothermal resource with large exploitation value in China. If developed with a power capacity of 1×108 kW, the Rehai and Yangbajing fields along would be able to generate electricity for 1560 years.  相似文献   

11.
A schematic model showing the sources of hot waters being discharged at the surface in the Kuju-Iwoyama of the Kuju volcano has been developed. Based on the isotopic characteristics of these fluids it is inferred that deep magmatic fluid mixes with thermal waters derived from rainwater in a shallow geothermal reservoir, and with local groundwaters in a deeper reservoir. These thermal waters feed hot springs that discharge waters with Cl/SO4 ratios that differ from that of the fumaroles on Kuju-Iwoyama, due to the addition of SO42− ions produced by the decomposition of native sulfur and mixing with magmatic fluid of high Cl content.  相似文献   

12.
In this paper we analyze the main available data related to the geothermal system of Ischia Island, starting from the first geothermal exploration in 1939. Our aim is to define a conceptual model of the geothermal reservoir, according to geological, geochemical, geophysical and stratigraphic data. In recent times, the interest on geothermal exploitation for electricity generation in Italy is rapidly increasing and the Ischia Island is one of the main targets for future geothermal exploitation. Nowadays, one of the main economic resources of the island is the tourism, mainly driven by the famous thermal springs; so, it is crucial to study the possible interaction between geothermal exploitation and thermal spring activities. To this aim, we also analyze the possible disturbance on temperature and pressure in the shallow geothermal reservoir, due to the heat withdrawal for electric production related to small power plant size (1–5 MWe). Such analysis has been performed by using numerical simulations based on a well known thermofluid-dynamical code (TOUGH2®). Obtained results show that such geothermal exploitation generates a perturbation of temperature and pressure field which, however, is confined in a small volume around the well. At shallow level (0–100 m) the exploitation does not produce any appreciable disturbance, and can be made compatible with thermal spring exploitation. Moreover, such results are crucial both for the evaluation of volcanological processes in the island and for the general assessment of geothermal resource sustainability.  相似文献   

13.
This study addresses the hydrogeochemistry of thermal springs that emerge from the Asmari limestone in a gorge at Changal Anticline in the vicinity of the Salman-Farsi dam. The Changal thermal springs vary in temperature between 28 and 40 °C. Chemical and isotopic compositions of the thermal waters suggest two distinct hydrogeological systems: a deep, moderate-temperature (∼40 °C) geothermal system recharged by deeply circulating meteoric waters, and a shallow cold aquifer system related to local groundwater. The source geothermal fluid temperature was calculated using different geothermometers and mineral saturation indexes. Based on chemical and isotopic data, it is hypothesized that: (1) mixing occurs between the ascending geothermal water and shallow cold water; (2) the resulting thermal waters reaching surface are a mixture of 80% local, shallow meteoric water and 20% geothermal water; and (3) the circulation depth of the meteoric water is about 1500 m. The thermal reservoir temperature is estimated to be between 70 and 80 °C according to calculations using different geothermometers and computation of saturation indices for different solid phases.  相似文献   

14.
为了科学合理开发利用地热资源,在分析太原市亲贤地垒区地热田形成背景的基础上建立了地热田地质模型,分析了热水补给来源和运移机制,并对地热资源进行了评价。结果表明,太原市亲贤地热田地热水来源于大气降水补给,属滞流型无氚老水;亲贤地垒区热田具备了良好的盖层、热储、热源和水循环通道等地质条件,热水是经深循环(受深部热源加热)而形成的;热水开采量不能超过3 600m3/d,热水储存资源量为9.76×108 m3,可实现开采的地热能折合标准煤约1 500×104t。  相似文献   

15.
Hg contents of soils in geothermal areas in the western U.S. were measured and a three-fold distribution was observed: peak, aureole and background. Peak values (up to several 100 ppm Hg) occur in fumaroles of vapour-dominated systems, around hot springs, and in zones overlying steeply dipping, hot-water aquifers. Aureoic values (up to several 100 ppb Hg) are found in zones surrounding the peak areas and delineate areas with shallow geothermal convection. Background values vary between 7 and 40 ppb Hg (geometric mean). Usually, Hg is present in a form that can be easily re-volatilized and released to the atmosphere. Altered areas related to fossil hydrothermal systems can be distinguished from alteration related to active systems by their Hg contents. In the rare cases of Hg enrichments as cinnabar or as traces in other sulphides (pyrite, sphalerite) the Hg is not easily released from its host phase, and distinction between active and fossil systems is not possible. Hg anomaly patterns yield information on the presence as well as the geometry of shallow geothermal circulation patterns. In conjunction with structural geologic data, Hg patterns can be helpful in defining reservoir boundaries and can aid in the selection of drill site location.  相似文献   

16.
Sixty-five water samples and seven associated gas samples have been collected on Lesbos island. The lithology and structural setting have resulted in two main types of hydrological circulation: a shallow circulation hosting low-salinity cold waters and a deeper one, hosting high-salinity hot waters that often emerge in thermal springs near the coast. The cold waters are characterized by Ca(Mg)-HCO3(SO4) composition, while the thermal waters generally have an Na-Cl composition. The chemical features of the former can be explained by their circulation in the ophiolite-bearing phyllitic basement and volcanic rocks. Waters circulating in the ultramafic layers of the basement are richer in Mg than the waters whose circulation is mainly within marble levels or volcanic rocks. The Na-Cl thermal waters are characterized by salinities ranging from 1910 to 35,700 mg/kg. As indicated by previous hydrogeochemical and isotopic studies, the Na-Cl composition of the thermal waters on Lesbos is the result of mixing between shallow meteoric waters and marine waters. While interacting with the minerals of the geothermal reservoir, the saline waters retain the Na/Cl sea water ratio but become enriched in Ca2+ and depleted in Mg2+ with respect to sea water.Processes of hydrothermal alteration at depth are activated by a gas phase enriched in CO2, which reaches the geothermal reservoir by rising along the deep fractures of the basement. Thermodynamic calculations based on hydrothermal alteration processes occurring at the estimated temperatures of the geothermal reservoir (about 120 °C) indicate that the thermal waters of Lesbos are in equilibrium with talc and dolomite.  相似文献   

17.
In Greece the geothermal areas are located in regions of Quaternary or Miocene volcanism and in continental basins of high heat flow. The existence of high-temperature (>200 °C) resources has been proven by deep drilling on the islands of Milos and Nisyros and inferred on the island of Santorini by its active volcanism. Elsewhere, geological investigations, geochemical analyses of thermal springs and shallow drilling have identified many low-temperature (<100 °C) reservoirs, utilized for spas and greenhouse/soil heating. Ternary K–Na–Mg geothermometer data suggest deep, medium-temperature resources (100–200 °C) in Sousaki, the islands of Samothraki, Chios and Lesvos, in the basins of Nestos River Delta and Alexandroupolis and in the graben of Sperchios River. In the basins of northern Greece these resources are also inferred from deep oil exploration well data.  相似文献   

18.
This study deals with thermal mining in several geothermal systems in Iceland. A number of 2500- to 3000-m deep drillholes have been drilled into low temperature geothermal areas in the country. The conductive gradient outside active geothermal areas has also been mapped, and shows a systematic variation from lower than 50°C/km in the outer parts of the Tertiary basalts to over 100°C/km on the borders of the volcanic zones (rift zones). The difference between formation temperatures inside geothermal systems and the surrounding conductive gradient can be computed as a function of depth. This difference is termed ΔT in this paper. The ΔT-curves show that the upper parts of the geothermal systems are heated and the lower parts are cooled compared to the undisturbed conductive gradient. In many cases the cooling of the lower part is greater than the heating in the upper part, so that a net thermal mining has occurred. This thermal mining is calculated for several geothermal systems, and the systems are compared. The net thermal mining in the top 3000 m appears to be much greater in formations of Pleistocene and Pliocene age. It gradually decreases to zero for formations older than 6 million years. However, the net thermal mining is critically dependent on the maximum depth of water convection in these systems, which is unknown.  相似文献   

19.
Our ongoing studies of water-rock interaction at Cerro Prieto have now been extended to include samples from 40 wells. We have confirmed the regular sequence of progressive hydrothermal alteration zones previously described, and have mapped these alteration zones across the geothermal field. Our earlier work showed the relationships between hydrothermal mineralogy, temperature and permeability, in that alteration occurs at lower temperature in sandstone than in the less permeable shales. The effects of chemical parameters such as silica activity and differences in CO2 fugacity have also become apparent when mineral assemblages are compared in sandstones from different wells at the same temperature. A rather complete picture of the shape of the reservoir and the nature of its boundaries is developing, and we have begun to identify patterns in the observed hydrothermal mineral zonations which are characteristic of different temperature gradients. We infer such different gradients to be indicative of different parts of the hydrothermal flow regime. In certain wells mineral zones are closely spaced, indicating steep thermal gradients, while in others they are much farther apart. We believe that patterns characteristic of recharge, discharge and upwelling zones as well as areas of primarily horizontal flow can be recognized.The geothermal circulation system at Cerro Prieto appears to be rather young and shows no indication of retrograde reactions due to cooling. The pattern of fluid flow does not seem to be significantly affected by faults, stratigraphic horizons or by the presence of a cap-rock. The mineral zones define a thermal dome which is apparently fed from the east and spreads westward.  相似文献   

20.
The volume method is used to evaluate the productive potential of unexploited and minimally exploited geothermal fields. The distribution of PCO2 in shallow groundwaters delimits the geothermal fields. This approach is substantiated by the good correspondence between zones of high CO2 flux, and the areal extension of explored geothermal systems of high enthalpy (Monte Amiata and Latera), medium enthalpy (Torre Alfina) and low enthalpy (Viterbo). Based on the data available for geothermal fields either under exploitation or investigated by long-term production tests, a specific productivity of 40 t h−1 km−3 is assumed. The total potential productivity for the recent volcanic areas of Latium is about 28 × 103 t h−1, with 75% from low-enthalpy geothermal fields, 17% from medium-enthalpy systems, and 8% from high-enthalpy reservoirs. The total extractable thermal power is estimated to be 2220–2920 MW, 49–53% from low-enthalpy geothermal fields, 28–32% from medium-enthalpy systems, and 19–20% from high-enthalpy reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号