首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The shortening of fallow period in several areas in tropical Africa has reduced soil fertility and exposed soils to erosion and run-off. Fertilizer application and crop conservation practices are needeed to sustain high crop yield and to conserve the natural resource base for upland crop production in the continent. Field trials were carried out to evaluate the effect of fertilizer application and soil and crop residues management practices on yield of maize (Zea mays L.) planted on a Plinthudult soil at Bertoua, Eastern Cameroon. Maize yields increased significantly with nitrogen and phosphorus fertilizer application. Under the rainfall pattern prevailing in the area, the amount of nitrogen required for maximum yield was higher in the second season. On the other hand, the amount of phosphorus required for maximum yield appeared to decrease with time. The burning of crop residues and weeds prior to planting together with no-till practive gave higher yield of maize than other soil and crop residues management practices.  相似文献   

2.
在冬季低温条件下,利用设置在厂区内处理量为100 t/d的中试装置进行试验,分别探讨了水温、p H、溶解氧、停留时间与出水氨氮的关系。结果显示曝气池水温变化范围为11.0~15.5℃,p H保持在7.0~7.5,在曝气充足情况下未见出水氨氮超标现象(均小于8 mg/L)。通过提高溶解氧,可以有效提高氨氮去除率,出水氨氮能够稳定达到《城镇污水处理厂污染物综合排放标准》(GB 18918—2002)一级A标准。而当溶解氧降低至1 mg/L以下,则会影响出水氨氮达标。停留时间为10~14 h对出水氨氮的影响不明显。  相似文献   

3.
Field trials were conducted at Kadawa, northern Nigeria, during 1975–77 to study the efficiency of nitrogen fertilizer use under maize (Zea mays L.)—wheat (Triticum aestivum L.) rotation; the study also examined the impact of continuous N use on some soil properties. Grain and straw dry matter yields, grain N content, crop N uptake and whole plant N concentration of wheat at different growth stages increased significantly with increasing levels of N application. Per cent increases in mean grain yield of N treated plots over control were 77, 131 and 141 for maize and 195, 308 and 326 for wheat at 60, 120 and 180 kg N per ha levels, respectively. The calculated N rates for maximum yield were 177.5 and 164.0 kg N per ha for maize and wheat, respectively. Short-term beneficial effect of dung on maize yield was ascribed to its additional N supply. Urea and calcium ammonium nitrate (CAN) were equally good for both maize and wheat; full and split N application gave no significant difference in yield. The values for mean fertilizer N recovery over all the crops were 64, 58 and 44% respectively, at 60, 120 and 180 kg N per ha levels.Nitrogen application at the highest rate (180 kg per ha) reduced the soil pH significantly in the top 40 cm of the soil profile. The magnitude of soil acidification at levels of N below 120 kg per ha was not appreciable in this study. High N application also depleted the soil of its cations at differential rates. Other factors such as N source, time of N application and addition of dung along with N fertilizer did not have much influence on the rate of short-term soil acidification due to N fertilizer use.  相似文献   

4.
Field trials were conducted on two soil types for seven years (1988–1994) to investigate grain yield response of maize to crop residue application as influenced by varying rates of applied and residual N and P fertilizers. Yearly application of N and P fertilizers at both one-half and full recommended rates resulted in grain yield increases of more than 500 and 1100 kg ha-1, respectively over application of only crop residue. Moreover, grain yield responses due to residual N and P fertilizers applied only during the first year were found to be comparable to the yearly applications of these fertilizers. Rainfall and soil type have exerted considerable influences on the grain yield response obtained in this study. Grain yield exhibited a corresponding decrease with decreasing rainfall. Grain yield increases on Typic Pellustert were relatively higher than on Typic Ustorthent.  相似文献   

5.
为探明凤眼莲对藻类的抑制效果,该文在不同覆盖率条件下分析了凤眼莲去除氮磷效果、凤眼莲植株及其种植水的抑藻效应。结果表明在该试验条件下,凤眼莲去除氮磷的效果与其生物量的增长率呈正相关,50%覆盖率下氮磷去除率最高;短期内凤眼莲及种植水对藻类的去除率均高达70%,且种植水的抑藻效应与覆盖率呈正相关。  相似文献   

6.
Major challenges for combined use of organic and mineral nutrient sources in smallholder agriculture include variable type and quality of the resources, their limited availability, timing of their relative application and the proportions at which the two should be combined. Short-term nutrient supply capacity of five different quality organic resources ranging from high to low quality, namely Crotalaria juncea, Calliandra calothyrsus, cattle manure, maize stover and Pinus patula sawdust were tested in the field using maize as a test crop. The study was conducted on two contrasting soil types at Makoholi and Domboshawa, which fall under different agro-ecological regions of Zimbabwe. Makoholi is a semi-arid area (<650 mm yr−1) with predominantly coarse sandy soils containing approximately 90 g kg−1 clay while Domboshawa (>750 mm yr−1) soils are sandy-clay loams with 220 g kg−1 clay. Each organic resource treatment was applied at low (2.5 t C ha−1) and high (7.5 t C ha−1) biomass rates at each site. Each plot was sub-divided into two with one half receiving 120 kg N ha−1 against zero in the other. At Makoholi, there was a nine-fold increase in maize grain yield under high application rates of C. juncea over the unfertilized control, which yielded only 0.4 t ha−1. Combinations of mineral N fertilizer with the leguminous resources and manure resulted in between 24% and 104% increase in grain yield against sole fertilizer, implying an increased nutrient recovery by maize under organic–mineral combinations. Maize biomass measured at 2 weeks after crop emergence already showed treatment differences, with biomass yields increasing linearly with soil mineral N availability (R 2 = 0.75). This 2-week maize biomass in turn gave a positive linear relationship (R 2 = 0.82) with grain yield suggesting that early season soil mineral N availability largely determined final yield. For low quality resources of maize stover and sawdust, application of mineral N fertilizer resulted in at least a seven-fold grain yield increase compared with sole application of the organic resources. Such nutrient combinations resulted in grain harvest indices of between 44% and 48%, up from a mean of 35% for sole application, suggesting the potential of increasing maize productivity from combinations of low quality resources with mineral fertilizer under depleted sandy soils. At Domboshawa, grain yields averaged 7 t ha−1 and did not show any significant treatment differences. This was attributed to relatively high levels of fertility under the sandy-clay loams during this first year of the trial implementation. Differences in N supply by different resources were only revealed in grain and stover uptake. Grain N concentration from the high quality leguminous resources averaged 2% against 1.5% from sawdust treatments. We conclude that early season soil mineral N availability is the primary regulatory factor for maize productivity obtainable under poor sandy soils. Maize biomass at 2 weeks is a potential tool for early season assessment of potential yields under constrained environments. However, the likely impact on system productivity following repeated application of high N-containing organic materials on different soil types remains poorly understood.  相似文献   

7.
The recovery of 15N-labelled fertilizer applied to a winter wheat (120 kg N ha–1) and also a perennial ryegrass (60 kg N ha–1) crop grown for seed for 1 year in the Canterbury region of New Zealand in the 1993/94 season was studied in the field. After harvests, ryegrass and wheat residues were subjected to four different residue management practices (i.e. ploughed, rotary hoed, mulched and burned) and three subsequent wheat crops were grown, the first succeeding wheat crop sown in 1994/95 to examine the effects of different crop residue management practices on the residual 15N recovery by succeeding wheat crops. Total 15N recoveries by the winter wheat and ryegrass (seed, roots and tops) were 52% and 41%, respectively. Corresponding losses of 15N from the crop-soil systems represented by un-recovered 15N in crop and soil were 12% and 35%, respectively. These losses were attributed to leaching and denitrification. The proportions of 15N retained in the soil (0-400 mm depth) at the time of harvest of winter wheat and ryegrass were 36% and 24%, respectively. Although the soil functioned as a substantial sink for fertilizer N, the recovery of this residual fertilizer by subsequent three winter wheat crops was low (1-5%) and this was not affected by different crop residue management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号