首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mizar Mathematical Library is one of the largest libraries of formalized and mechanically verified mathematics. Its language is highly optimized for authoring by humans. As in natural languages, the meaning of an expression is influenced by its (mathematical) context in a way that is natural to humans, but harder to specify for machine manipulation. Thus its custom file format can make the access to the library difficult. Indeed, the Mizar system itself is currently the only system that can fully operate on the Mizar library. This paper presents a translation of the Mizar library into the OMDoc format (Open Mathematical Documents), an XML-based representation format for mathematical knowledge. OMDoc is geared towards machine support and interoperability by making formula structure and context dependencies explicit. Thus, the Mizar library becomes accessible for a wide range of OMDoc-based tools for formal mathematics and knowledge management. We exemplify interoperability by indexing the translated library in the MathWebSearch engine, which provides an “applicable theorem search” service (almost) out of the box.  相似文献   

2.
Dynamically adaptive systems (DAS) must cope with system and environmental conditions that may not have been fully understood or anticipated during development. RELAX is a fuzzy logic-based specification language for identifying and assessing sources of environmental uncertainty, thereby making DAS requirements more tolerant of unanticipated conditions. This paper presents AutoRELAX, an approach that automatically generates RELAXed goal models to address environmental uncertainty. Specifically, AutoRELAX identifies goals to RELAX, which RELAX operators to apply, and the shape of the fuzzy logic function that establishes the goal satisfaction criteria. AutoRELAX generates different solutions by making tradeoffs between minimizing the number of RELAXed goals and maximizing delivered functionality by reducing the number of adaptations triggered by minor and adverse environmental conditions. In a recent extension, AutoRELAX uses a stepwise adaptation of weights to balance these two competing concerns and thereby further improve the utility of AutoRELAX. We apply it to two industry-based applications involving network management and a robotic controller, respectively.  相似文献   

3.
We strengthen a previously known connection between the size complexity of two-way finite automata ( ) and the space complexity of Turing machines (tms). Specifically, we prove that
  • every s-state has a poly(s)-state that agrees with it on all inputs of length ≤s if and only if NL?L/poly, and
  • every s-state has a poly(s)-state that agrees with it on all inputs of length ≤2 s if and only if NLL?LL/polylog.
  • Here, and are the deterministic and nondeterministic , NL and L/poly are the standard classes of languages recognizable in logarithmic space by nondeterministic tms and by deterministic tms with access to polynomially long advice, and NLL and LL/polylog are the corresponding complexity classes for space O(loglogn) and advice length poly(logn). Our arguments strengthen and extend an old theorem by Berman and Lingas and can be used to obtain variants of the above statements for other modes of computation or other combinations of bounds for the input length, the space usage, and the length of advice.  相似文献   

    4.
    We thoroughly study the behavioural theory of epi, a ??-calculus extended with polyadic synchronisation. We show that the natural contextual equivalence, barbed congruence, coincides with early bisimilarity, which is thus its co-inductive characterisation. Moreover, we relate early bisimilarity with the other usual notions, ground, late and open, obtaining a lattice of equivalence relations that clarifies the relationship among the ??standard?? bisimilarities. Furthermore, we apply the theory developed to obtain an expressiveness result: epi extended with key encryption primitives may be fully abstractly encoded in the original epi calculus. The proposed encoding is sound and complete with respect to barbed congruence; hence, cryptographic epi (crypto-epi) gets behavioural theory for free, which contrasts with other process languages with cryptographic constructs that usually require a big effort to develop such theory. Therefore, it is possible to use crypto-epi to analyse and to verify properties of security protocols using equational reasoning. To illustrate this claim, we prove compliance with symmetric and asymmetric cryptographic system laws, and the correctness of a protocol of secure message exchange.  相似文献   

    5.
    A UTP semantics for Circus   总被引:2,自引:2,他引:0  
    Circus specifications define both data and behavioural aspects of systems using a combination of Z and CSP constructs. Previously, a denotational semantics has been given to Circus; however, a shallow embedding of Circus in Z, in which the mapping from Circus constructs to their semantic representation as a Z specification, with yet another language being used as a meta-language, was not useful for proving properties like the refinement laws that justify the distinguishing development technique associated with Circus. This work presents a final reference for the Circus denotational semantics based on Hoare and He’s Unifying Theories of Programming (UTP); as such, it allows the proof of meta-theorems about Circus including the refinement laws in which we are interested. Its correspondence with the CSP semantics is illustrated with some examples. We also discuss the library of lemmas and theorems used in the proofs of the refinement laws. Finally, we give an account of the mechanisation of the Circus semantics and of the mechanical proofs of the refinement laws.  相似文献   

    6.
    By terms-allowed-in-formulas capacity, Artemov’s Logic of Proofs LP Artemov includes self-referential formulas of the form t:?(t) that play a crucial role in the realization of modal logic S4 in LP, and in the Brouwer–Heyting–Kolmogorov semantics of intuitionistic logic via LP. In an earlier work appeared in the Proceedings of CSR 2010 the author defined prehistoric loop in a sequent calculus of S4, and verified its necessity to self-referentiality in S4?LP realization. In this extended version we generalize results there to T and K4, two modal logics smaller than S4 that yet call for self-referentiality in their realizations into corresponding justification logics JT and J4.  相似文献   

    7.
    We give a #NC 1 upper bound for the problem of counting accepting paths in any fixed visibly pushdown automaton. Our algorithm involves a non-trivial adaptation of the arithmetic formula evaluation algorithm of Buss, Cook, Gupta and Ramachandran (SIAM J. Comput. 21:755?C780, 1992). We also show that the problem is #NC 1 hard. Our results show that the difference between #BWBP and #NC 1 is captured exactly by the addition of a visible stack to a nondeterministic finite-state automaton.  相似文献   

    8.
    In the uniform circuit model of computation, the width of a boolean circuit exactly characterizes the “space” complexity of the computed function. Looking for a similar relationship in Valiant’s algebraic model of computation, we propose width of an arithmetic circuit as a possible measure of space. In the uniform setting, we show that our definition coincides with that of VPSPACE at polynomial width. We introduce the class VL as an algebraic variant of deterministic log-space L; VL is a subclass of VP. Further, to define algebraic variants of non-deterministic space-bounded classes, we introduce the notion of “read-once” certificates for arithmetic circuits. We show that polynomial-size algebraic branching programs (an algebraic analog of NL) can be expressed as read-once exponential sums over polynomials in ${{\sf VL}, {\it i.e.}\quad{\sf VBP} \in \Sigma^R \cdot {\sf VL}}$ . Thus, read-once exponential sums can be viewed as a reasonable way of capturing space-bounded non-determinism. We also show that Σ R ·VBPVBP, i.e. VBPs are stable under read-once exponential sums. Though the best upper bound we have for Σ R ·VL itself is VNP, we can obtain better upper bounds for width-bounded multiplicatively disjoint (md-) circuits. Without the width restriction, md- arithmetic circuits are known to capture all of VP. We show that read-once exponential sums over md- constant-width arithmetic circuits are within VP and that read-once exponential sums over md- polylog-width arithmetic circuits are within VQP. We also show that exponential sums of a skew formula cannot represent the determinant polynomial.  相似文献   

    9.
    Recently the one-counter trace languages and the context-free trace languages have been characterized through restricted types of cooperating distributed systems (CD-systems) of stateless deterministic restarting automata with window size one (so-called stl-det-R(1)-automata) that work in mode ‘=1’ and that use an external counter or pushdown store to determine the successor components within computations. Here we study the deterministic variants of these CD-systems, comparing the resulting language classes to the classes of languages defined by CD-systems of stl-det-R(1)-automata without such an external device and to some classical language families, among them in particular the classes of rational, one-counter, and context-free trace languages. In addition, we present a large number of (non-)closure properties for our language classes.  相似文献   

    10.
    The uml Profile for Modeling and Analysis of Real-Time and Embedded (RTE) systems has recently been adopted by the OMG. Its Time Model extends the informal and simplistic Simple Time package proposed by Unified Modeling Language (UML2) and offers a broad range of capabilities required to model RTE systems including discrete/dense and chronometric/logical time. The Marte specification introduces a Time Structure inspired from several time models of the concurrency theory and proposes a new clock constraint specification language (ccsl) to specify, within the context of the uml, logical and chronometric time constraints. A semantic model in ccsl is attached to a (uml) model to give its timed causality semantics. In that sense, ccsl is comparable to the Ptolemy environment, in which directors give the semantics to models according to predefined models of computation and communication. This paper focuses on one historical model of computation of Ptolemy [Synchronous Data Flow (SDF)] and shows how to build SDF graphs by combining uml models and ccsl.  相似文献   

    11.
    This paper describes the Automated Reasoning for Mizar ( $\textsf{Miz}\mathbb{AR}$ ) service, which integrates several automated reasoning, artificial intelligence, and presentation tools with Mizar and its authoring environment. The service provides ATP assistance to Mizar authors in finding and explaining proofs, and offers generation of Mizar problems as challenges to ATP systems. The service is based on a sound translation from the Mizar language to that of first-order ATP systems, and relies on the recent progress in application of ATP systems in large theories containing tens of thousands of available facts. We present the main features of $\textsf{Miz}\mathbb{AR}$ services, followed by an account of initial experiments in finding proofs with the ATP assistance. Our initial experience indicates that the tool offers substantial help in exploring the Mizar library and in preparing new Mizar articles.  相似文献   

    12.
    We report progress on the NL versus UL problem.
  • We show that counting the number of s-t paths in graphs where the number of s-v paths for any v is bounded by a polynomial can be done in FUL: the unambiguous log-space function class. Several new upper bounds follow from this including ${{{ReachFewL} \subseteq {UL}}}$ and ${{{LFew} \subseteq {UL}^{FewL}}}$
  • We investigate the complexity of min-uniqueness—a central notion in studying the NL versus UL problem. In this regard we revisit the class OptL[log n] and introduce UOptL[log n], an unambiguous version of OptL[log n]. We investigate the relation between UOptL[log n] and other existing complexity classes.
  • We consider the unambiguous hierarchies over UL and UOptL[log n]. We show that the hierarchy over UOptL[log n] collapses. This implies that ${{{ULH} \subseteq {L}^{{promiseUL}}}}$ thus collapsing the UL hierarchy.
  • We show that the reachability problem over graphs embedded on 3 pages is complete for NL. This contrasts with the reachability problem over graphs embedded on 2 pages, which is log-space equivalent to the reachability problem in planar graphs and hence is in UL.
  •   相似文献   

    13.
    We introduce two new natural decision problems, denoted as ? RATIONAL NASH and ? IRRATIONAL NASH, pertinent to the rationality and irrationality, respectively, of Nash equilibria for (finite) strategic games. These problems ask, given a strategic game, whether or not it admits (i) a rational Nash equilibrium where all probabilities are rational numbers, and (ii) an irrational Nash equilibrium where at least one probability is irrational, respectively. We are interested here in the complexities of ? RATIONAL NASH and ? IRRATIONAL NASH. Towards this end, we study two other decision problems, denoted as NASH-EQUIVALENCE and NASH-REDUCTION, pertinent to some mutual properties of the sets of Nash equilibria of two given strategic games with the same number of players. The problem NASH-EQUIVALENCE asks whether or not the two sets of Nash equilibria coincide; we identify a restriction of its complementary problem that witnesses ? RATIONAL NASH. The problem NASH-REDUCTION asks whether or not there is a so called Nash reduction: a suitable map between corresponding strategy sets of players that yields a Nash equilibrium of the former game from a Nash equilibrium of the latter game; we identify a restriction of NASH-REDUCTION that witnesses ? IRRATIONAL NASH. As our main result, we provide two distinct reductions to simultaneously show that (i) NASH-EQUIVALENCE is co- $\mathcal{NP}$ -hard and ? RATIONAL NASH is $\mathcal{NP}$ -hard, and (ii) NASH-REDUCTION and ? IRRATIONAL NASH are both $\mathcal{NP}$ -hard, respectively. The reductions significantly extend techniques previously employed by Conitzer and Sandholm (Proceedings of the 18th Joint Conference on Artificial Intelligence, pp. 765–771, 2003; Games Econ. Behav. 63(2), 621–641, 2008).  相似文献   

    14.
    We explore relationships between circuit complexity, the complexity of generating circuits, and algorithms for analyzing circuits. Our results can be divided into two parts:
    1. Lower bounds against medium-uniform circuits. Informally, a circuit class is “medium uniform” if it can be generated by an algorithmic process that is somewhat complex (stronger than LOGTIME) but not infeasible. Using a new kind of indirect diagonalization argument, we prove several new unconditional lower bounds against medium-uniform circuit classes, including: ? For all k, P is not contained in P-uniform SIZE(n k ). That is, for all k, there is a language \({L_k \in {\textsf P}}\) that does not have O(n k )-size circuits constructible in polynomial time. This improves Kannan’s lower bound from 1982 that NP is not in P-uniform SIZE(n k ) for any fixed k. ? For all k, NP is not in \({{\textsf P}^{\textsf NP}_{||}-{\textsf {uniform SIZE}}(n^k)}\) .This also improves Kannan’s theorem, but in a different way: the uniformity condition on the circuits is stronger than that on the language itself. ? For all k, LOGSPACE does not have LOGSPACE-uniform branching programs of size n k .
    2. Eliminating non-uniformity and (non-uniform) circuit lower bounds. We complement these results by showing how to convert any potential simulation of LOGTIME-uniform NC 1 in ACC 0/poly or TC 0/poly into a medium-uniform simulation using small advice. This lemma can be used to simplify the proof that faster SAT algorithms imply NEXP circuit lower bounds and leads to the following new connection: ? Consider the following task: given a TC 0 circuit C of n O(1) size, output yes when C is unsatisfiable, and output no when C has at least 2 n-2 satisfying assignments. (Behavior on other inputs can be arbitrary.) Clearly, this problem can be solved efficiently using randomness. If this problem can be solved deterministically in 2 n-ω(log n) time, then \({{\textsf{NEXP}} \not \subset {\textsf{TC}}^0/{\rm poly}}\) .
    Another application is to derandomize randomized TC 0 simulations of NC 1 on almost all inputs: ?Suppose \({{\textsf{NC}}^1 \subseteq {\textsf{BPTC}}^0}\) . Then, for every ε > 0 and every language L in NC 1, there is a LOGTIME?uniform TC 0 circuit family of polynomial size recognizing a language L′ such that L and L′ differ on at most \({2^{n^{\epsilon}}}\) inputs of length n, for all n.  相似文献   

    15.
    Over the last decade, great progress has been made in developing practical transactional memory (TM) implementations, but relatively little attention has been paid to precisely specifying what it means for them to be correct, or formally proving that they are. In this paper, we present TMS1 (Transactional Memory Specification 1), a precise specification of correct behaviour of a TM runtime library. TMS1 targets TM runtimes used to implement transactional features in an unmanaged programming language such as C or C++. In such contexts, even transactions that ultimately abort must observe consistent states of memory; otherwise, unrecoverable errors such as divide-by-zero may occur before a transaction aborts, even in a correct program in which the error would not be possible if transactions were executed atomically. We specify TMS1 precisely using an I/O automaton (IOA). This approach enables us to also model TM implementations using IOAs and to construct fully formal and machine-checked correctness proofs for them using well established proof techniques and tools. We outline key requirements for a TM system. To avoid precluding any implementation that satisfies these requirements, we specify TMS1 to be as general as we can, consistent with these requirements. The cost of such generality is that the condition does not map closely to intuition about common TM implementation techniques, and thus it is difficult to prove that such implementations satisfy the condition. To address this concern, we present TMS2, a more restrictive condition that more closely reflects intuition about common TM implementation techniques. We present a simulation proof that TMS2 implements TMS1, thus showing that to prove that an implementation satisfies TMS1, it suffices to prove that it satisfies TMS2. We have formalised and verified this proof using the PVS specification and verification system.  相似文献   

    16.
    We consider the problem of finding a sparse multiple of a polynomial. Given f??F[x] of degree d over a field F, and a desired sparsity t, our goal is to determine if there exists a multiple h??F[x] of f such that h has at most t non-zero terms, and if so, to find such an h. When F=? and t is constant, we give an algorithm which requires polynomial-time in d and the size of coefficients in h. When F is a finite field, we show that the problem is at least as hard as determining the multiplicative order of elements in an extension field of F (a problem thought to have complexity similar to that of factoring integers), and this lower bound is tight when t=2.  相似文献   

    17.
    We study a simple technique, originally presented by Herlihy (ACM Trans. Program. Lang. Syst. 15(5):745–770, 1993), for executing concurrently, in a wait-free manner, blocks of code that have been programmed for sequential execution and require significant synchronization in order to be performed in parallel. We first present an implementation of this technique, called Sim, which employs a collect object. We describe a simple implementation of a collect object from a single shared object that supports atomic Add (or XOR) in addition to read; this implementation has step complexity O(1). By plugging in to Sim this implementation, Sim exhibits constant step complexity as well. This allows us to derive lower bounds on the step complexity of implementations of several shared objects, like Add, XOR, collect, and snapshot objects, from LL/SC objects. We then present a practical version of Sim, called PSim, which is implemented in a real shared-memory machine. From a theoretical perspective, PSim has worse step complexity than Sim, its theoretical analog; in practice though, we experimentally show that PSim is highly-efficient: it outperforms several state-of-the-art lock-based and lock-free synchronization techniques, and this given that it is wait-free, i.e. that it satisfies a stronger progress condition than all the algorithms that it outperforms. We have used PSim to get highly-efficient wait-free implementations of stacks and queues.  相似文献   

    18.
    In this paper, we show how to exploit the structure of some automata-based construction to efficiently solve the LTL synthesis problem. We focus on a construction proposed in Schewe and Finkbeiner that reduces the synthesis problem to a safety game, which can then be solved by computing the solution of the classical fixpoint equation νX.SafeCPre(X), where CPre(X) are the controllable predecessors of X. We have shown in previous works that the sets computed during the fixpoint algorithm can be equipped with a partial order that allows one to represent them very compactly, by the antichain of their maximal elements. However the computation of CPre(X) cannot be done in polynomial time when X is represented by an antichain (unless P = NP). This motivates the use of SAT solvers to compute CPre(X). Also, we show that the CPre operator can be replaced by a weaker operator CPre crit where the adversary is restricted to play a subset of critical signals. We show that the fixpoints of the two operators coincide, and so, instead of applying iteratively CPre, we can apply iteratively CPre crit. In practice, this leads to important improvements on previous LTL synthesis methods. The reduction to SAT problems and the weakening of the CPre operator into CPre crit and their performance evaluations are new.  相似文献   

    19.
    The class of polynomials computable by polynomial size log-depth arithmetic circuits (VNC 1) is known to be computable by constant width polynomial degree circuits (VsSC 0), but whether the converse containment holds is an open problem. As a partial answer to this question, we give a construction which shows that syntactically multilinear circuits of constant width and polynomial degree can be depth-reduced, which in our notation shows that sm-VsSC 0 ${\subseteq}$ ? sm-VNC 1. We further strengthen this inclusion, by giving a separate construction that provides a width-efficient simulation for constant width syntactically multilinear circuits by constant width syntactically multilinear algebraic branching programs; in our notation, sm-VsSC 0 ${\subseteq}$ ? sm-VBWBP. We then focus on polynomial size syntactically multilinear circuits and study relationships between classes of functions obtained by imposing various resource (width, depth, degree) restrictions on these circuits. Along the way, we also observe a characterization of the class NC 1 in terms of a restricted class of planar branching programs of polynomial size. Finally, in contrast to the general case, we report closure and stability of coefficient functions for the syntactically multilinear classes studied in this paper.  相似文献   

    20.
    SNEE: a query processor for wireless sensor networks   总被引:1,自引:0,他引:1  
    A wireless sensor network (WSN) can be construed as an intelligent, large-scale device for observing and measuring properties of the physical world. In recent years, the database research community has championed the view that if we construe a WSN as a database (i.e., if a significant aspect of its intelligent behavior is that it can execute declaratively-expressed queries), then one can achieve a significant reduction in the cost of engineering the software that implements a data collection program for the WSN while still achieving, through query optimization, very favorable cost:benefit ratios. This paper describes a query processing framework for WSNs that meets many desiderata associated with the view of WSN as databases. The framework is presented in the form of compiler/optimizer, called SNEE, for a continuous declarative query language over sensed data streams, called SNEEql. SNEEql can be shown to meet the expressiveness requirements of a large class of applications. SNEE can be shown to generate effective and efficient query evaluation plans. More specifically, the paper describes the following contributions: (1) a user-level syntax and physical algebra for SNEEql, an expressive continuous query language over WSNs; (2) example concrete algorithms for physical algebraic operators defined in such a way that the task of deriving memory, time and energy analytical cost-estimation models (CEMs) for them becomes straightforward by reduction to a structural traversal of the pseudocode; (3) CEMs for the concrete algorithms alluded to; (4) an architecture for the optimization of SNEEql queries, called SNEE, building on well-established distributed query processing components where possible, but making enhancements or refinements where necessary to accommodate the WSN context; (5) algorithms that instantiate the components in the SNEE architecture, thereby supporting integrated query planning that includes routing, placement and timing; and (6) an empirical performance evaluation of the resulting framework.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号