首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete and rapid peptide and glycopeptide mapping of a mouse monoclonal immunoglobulin (IgG2b) were carried out by liquid chromatography/electrospray ionization ion trap-mass spectrometry/mass spectrometry (LC/ ESI IT-MS/MS). It was possible to obtain spectra of a minor glycopeptide at a quantity as low as 1.8 pmol. Reduced and carboxymethylated mouse antidansyl monoclonal IgG2b (RCM-IgG2b) was digested with lysyl-endopeptidase. Proteolytic peptides were subjected to capillary HPLC separation followed by analysis with an ion trap mass spectrometer. The complete amino acid sequence of the IgG2b was characterized by using LC/ ESI IT-MS/MS. The structures of 12 different types of O-linked oligosaccharides attached to Thr-221AH in the hinge region and those of three major types of N-linked oligosaccharides attached to Asn-297H have been characterized.  相似文献   

2.
Expression of the 17.5-kDa truncated form of human recombinant macrophage colony stimulating factor (rM-CSF, 4-153) in Escherichia coli is complicated by the replacement of methionine residues by norleucine. In order to detect and quantitate this mistranslational event, the intact and the S-carboxyamidomethylated proteins were analyzed by amino acid analysis, automated Edman amino acid sequencing, and electrospray mass spectrometry. In addition, the endoproteinase Glu-C generated peptides were subjected to amino acid sequencing, high-performance liquid chromatography, and electrospray ionization mass spectrometry. The extent of norleucine substitution in different batches of rM-CSF varied between 0% and 20%. The relative instability of methionine residues needs to be considered when calculating the extent of norleucine substitution at methionine positions. The mass spectrometry of the intact rM-CSF allowed for examination of the distribution of multiply substituted methionine to norleucine species, and it enabled detection and quantitation of the norleucine incorporation down to the approximately 3% level. Selective ion chromatograms of molecular ions of interest obtained in reversed-phase high-performance liquid chromatography/electrospray ionization mass spectrometry of proteolytic fragments offered a reliable and fast method of detection and quantitation of norleucine-containing peptides. Norleucine residues were uniformly distributed among all four methionine positions (10, 27, 61, and 65). A substitution of methionine by its structural norleucine analog does not have any effect on the activity of the refolded rM-CSF dimers.  相似文献   

3.
Capillary electrophoresis/electrospray ionization (CE/ESI) high mass accuracy time-of-flight mass spectrometry was used for the first time to characterize small proteins using peptide mapping. To identify small proteins, the intact proteins were first analyzed to obtain their average molecular weights with errors less than 1 Da. On-line capillary electrophoresis mass spectrometry of the tryptic digests of these small proteins was then performed to obtain the accurate molecular weights of the peptides with accuracies of approximately 10 ppm. Next, this information was used for the identification of the proteins using a protein database. It was found that high mass accuracy is an effective tool in reducing the list of most-likely proteins generated by the database. In addition, on-line collision-induced dissociation of the completely or partially resolved capillary electrophoresis peaks of the protein digests was used to unambiguously identify the sequences of these peptides. Each CE/ESI-MS analysis used only 5 nL of sample containing approximately 120 fmol of each peptide in protein digests. The results indicate that the combination of capillary electrophoresis and high resolution, high mass accuracy time-of-flight mass spectrometry is a viable option for the identification of small proteins using peptide mapping.  相似文献   

4.
Markedly different chiral separation abilities were observed for native beta-cyclodextrin (beta-CD), carboxymethyl-beta-CD (CM-beta-CD) and heptakis (2,3,6-tri-O-methyl)-beta-CD (TM-beta-CD) towards the enantiomers of (+/-)-chlorpheniramine ((+/-)-CHL) in capillary electrophoresis (CE). Native beta-CD afforded almost baseline enantioseparation at a concentration of 18 mg/mL, whereas only 1 mg/mL solution of CM-beta-CD was required for adequate enantioseparation. TM-beta-CD allowed the nearly baseline enantioseparation only at a concentration as high as 80 mg/mL. Moreover, the migration order of (+/-)-CHL in the presence of TM-beta-CD was opposite to that with beta-CD and CM-beta-CD. 1H and 13C-NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) have been used in order to obtain preliminary information about the stoichiometry and the binding constants in the intermolecular diastereomeric complexes of (+/-)-CHL with these CDs.  相似文献   

5.
Capillary electrophoresis (CE) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI/MS) were combined in an off-line arrangement to provide separation and mass analysis of peptide and protein mixtures in the attomole range. A membrane target, precoated with MALDI matrix, was used for the continuous deposition of effluent exiting from a CE device. A sample track was produced by linear movement of the target during the electrophoretic separation and this track was subsequently analyzed by MALDI/MS. The technique is effective for peptides and proteins, having limits of detection (signal-to-noise >3) of about 50 amol for neurotensin (1673 Da) and 250 amol for cytochrome c (12361 Da) and apomyoglobin (16951 Da). The electrophoretic separation achieved from the membrane target, as measured by theoretical plate numbers from the mass spectrometric data, can be as high as 80-90% of that achieved by on-line UV detection under optimal conditions, although band broadening occurs and with some loss of separation efficiency. Non-volatile buffers such as 10-50 mM phosphate can also be used in the electrophoresis process and directly deposited on the membrane. The use of post-source decay techniques is shown for peptides in the CE sample track in order to obtain sequence verification. The effectiveness of this method of integration of CE and MALDI/MS is demonstrated with both peptide and protein mixtures and with the analysis of a tryptic digest of a protein.  相似文献   

6.
The structural characterization of two synthetic model peptides of the cI434 repressor is described. Unequivocal determination of the structure was achieved by means of electrospray ionization mass spectrometry of the intact peptides and by fast atom bombardment mass spectrometric identification of complementary peptide fragments obtained by tryptic and chymotrypic digestion and partial separation by reversed-phase high-performance liquid chromatography. The results show the potential of this approach for characterizing synthetic peptides of relatively high molecular weight.  相似文献   

7.
An in-capillary electrode sheathless interface was applied to the capillary electrophoresis/electrospray ionization-mass spectrometry (CE/ESI-MS) analysis of mixtures of small peptides, proteins, and tryptic digests of proteins. The effects of different experimental parameters on the performance of this CE/ESI-MS interface were studied. The distance of the in-capillary electrode from the CE outlet and the length of the electrode inside the capillary had no significant effects on the CE separation and ESI behavior under the experimental conditions used. However, significant enhancement of the sensitivity resulted from the use of narrower CE capillaries. Using a quadrupole mass spectrometer, an aminopropylsilane-coated capillary, and a wide scan mass-to-charge ratio range of 500-1400, detection limits of approximately 4, 1, and 0.6 fmol for cytochrome c and myoglobin were achieved for 75-, 50-, and 30-micron inner diameter capillaries, respectively. Approximately one order of magnitude lower detection limits were achieved under the multiple-ion monitoring mode. The application of the in-capillary electrode sheathless interface to real-world samples was demonstrated by CE/ESI-MS analysis of a human blood sample.  相似文献   

8.
Biopolymer sequencing with mass spectrometry has become increasingly important and accessible with the development of matrix-assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). Here we examine the use of sequential digestion for the rapid identification of proteolytic fragments, in turn highlighting the general utility of enzymatic MALDI ladder sequencing and ESI tandem mass spectrometry. Analyses were performed on oligonucleotides ranging in size from 2 to 50 residues, on peptides ranging in size from 7 to 44 residues and on viral coat proteins. MALDI ladder sequencing using exonuclease digestion generated a uniform distribution of ions and provided complete sequence information on the oligonucleotides 2-30 nucleic acid residues long. Only partial sequence information was obtained on the longer oligonucleotides. C-terminal peptide ladder sequencing typically provided information from 4 to 7 amino acids into the peptide. Sequential digestion, or endoprotease followed by exoprotease exposure, was also successfully applied to a trypsin digest of viral proteins. Analysis of ladder sequenced peptides by LCMS generated less information than in the MALDI-MS analysis and ESI-MS2 normally provided partial sequence information on both the small oligonucleotides and peptides. In general, MALDI ladder sequencing offered information on a broader mass range of biopolymers than ESI-MS2 and was relatively straightforward to interpret, especially for oligonucleotides.  相似文献   

9.
The high resolution of capillary zone electrophoresis/mass spectrometry (CZE/MS) offers a promising technique to characterize biomolecules in pharmaceutical and biotechnology industries. A novel capillary zone electrophoresis/electrospray ionization time-of-flight mass spectrometry (CZE/ESI-TOFMS) interface was designed in this study to successfully integrate ESI-TOFMS, nanospray, and CZE for biomolecular identification. The interface offers a novel way to take advantage of the high resolution separation achieved during CZE and the detection sensitivity of nanospray ESI-MS. The results showed mixtures of peptides were highly resolved within a few minutes (each CZE electropherogram of a peptide is 2-3 seconds). The novel CZE/ESI-TOFMS interface may simultaneously provide sensitivity, data acquisition speed, mass range, and mass resolution while maintaining resolution of the CZE separation.  相似文献   

10.
The potential of electrospray mass spectrometry (ESMS) for the sequencing of glycopeptides was evaluated using quadrupole time-of-flight (QTOF) technology in the MS/MS mode. The location of O-glycosylation sites was possible in the positive ion (+) mode by detection of prominent y- and b-fragment ions from the underivatized TAP25-2 [T1APPAHGVT9S10APDT14RPAPGS20T21APPA], an overlapping sequence of MUC1 tandem repeats which had been glycosylated in vitro by two GalNAc residues in the positions T9 and T21. The high mass resolution and accuracy of QTOF-(+)ESMS allowed reliable structural assignments. The reduced complexity of the fragment spectra and the higher signal-to-noise ratio render QTOF-(+)ESMS an alternative mass spectrometric approach to the identification of O-glycosylation sites when compared with sequencing by post-source decay matrix-assisted laser desorption/ionization MS. Diagnostic ions from the N-terminus in the b-series offered direct evidence, which was supported by indirect evidence from the C-terminus ions of the y-series. The higher glycosylated GalNAc2-substituted fragments were mainly observed as multiply ionized species.  相似文献   

11.
Hypelcin B is a mixture of antibiotic peptides produced by Hypocrea peltata. Hypelcins B-I, B-II, B-III, B-IV and B-V are components of this mixture purified by reversed-phase high-performance liquid chromatography. The amino acid sequences of these peptides were determined by electrospray mass spectrometry and electrospray mass spectrometry/mass spectrometry. The molecular weights of these peptides were all ca. 2000 and the structures were very similar.  相似文献   

12.
The B-domain of recombinant human Factor VIII comprises 909 amino acids and is extensively N- and O-glycosylated, in that at least 20 different sites are occupied by numerous carbohydrate structures. This domain was incubated with trypsin and subjected to liquid chromatography electrospray ionization mass spectrometry analysis, using an electrospray orthogonal acceleration time-of-flight mass spectrometer as the detector for a capillary reversed phase HPLC separation of the digest. The inherent high mass resolution afforded by this instrument provides both ion charge state determination and high accuracy mass measurement that are of significant advantage in defining such highly complex mixtures.  相似文献   

13.
A synthetic peptide, VLSPADKTNWGHEYRMF(cmC)QIG, was reacted with 4-chlorobenzenediazonium hexafluorophosphate as a model for reactions of aromatic diazonium ions with proteins. At a ratio of diazonium ion to peptide of 0.8:1, three products could be seen by reversed-phase HPLC. Electrospray mass spectrometric analysis of the isolated products revealed that two of the products had the same mass of 2648 Da, being 138 Da higher than the parent peptide and corresponding to the addition of a 4-chlorobenzenediazo group. The third isolated product had a mass of 2787 Da which corresponded to the addition of two 4-chlorobenzenediazo groups (276 Da). Digestion of the monoadducted intact peptides with trypsin or endoproteinase Glu-C and HPLC separation of adduct oligopeptides followed by sequencing with electrospray ionization tandem mass spectrometry showed unambiguously that histidine and tyrosine residues were the major sites of modification. Incubation of human serum albumin with 4-chlorobenzenediazonium hexafluorophosphate at molar ratios of 1:1, 1:2, and 1:10 resulted in adduct formation as detected by shifts in the HPLC retention time of the protein and also by an increase in mass as determined by electrospray mass spectrometry.  相似文献   

14.
Reported here is the isolation and characterization of two antibacterial peptides synthesized in an ant Myrmecia gulosa in response to bacterial challenge. The peptides were purified by reversed-phase high performance liquid chromatography and characterized by peptide sequencing and mass spectrometry. Both peptides were formed from 16 amino acids, were rich in proline ( approximately 30%), and had N-acetylgalactosamine O-linked to a conserved threonine. The activity of a synthetic non-glycosylated isoform was markedly reduced demonstrating that glycosylation was necessary for maximum activity. The peptides were active only against growing Escherichia coli. They were inactive against stationary cells, Gram-positive bacteria, the yeast Candida albicans, two species of mammalian cells, and bovine pestivirus.  相似文献   

15.
A method for the identification of proteins by their amino acid sequence at the low-femtomole to subfemtomole sensitivity level is described. It is based on an integrated system consisting of a capillary zone electrophoresis (CZE) instrument coupled to an electrospray ionization triple- quadrupole tandem mass spectrometer (ESI-MS/MS) via a microspray interface. The method consists of proteolytic fragmentation of a protein, peptide separation by CZE, analysis of separated peptides by ESI-MS/MS, and identification of the protein by correlation of the collision-induced dissociation (CID) patterns of selected peptides with the CID patterns predicted from all the isobaric peptides in a sequence database. Using standard peptides applied to a 20-microns-i.d. capillary, we demonstrate an ESI-MS limit of detection of less than 300 amol and CID spectra suitable for searching sequence databases obtained with 600 amol of sample applied to the capillary. Successful protein identification by the method was demonstrated by applying 50 and 38 fmol of a tryptic digest of the proteins beta-lactoglobulin and bovine serum albumin, respectively, to the system.  相似文献   

16.
A new beta chain variant was accidentally found through the assay of Hb A1c in a diabetic patient. The variant was detected by polyacrylamide gel isoelectrofocusing and electrospray ionization mass spectrometry. For sequence determination, globin was cleaved with combination of trypsin and lysyl endopeptidase and analyzed by high performance liquid chromatography connected to electrospray ionization mass spectrometry. An abnormal betaT-5 peptide was found by reconstructed selected ion monitoring. The collision-induced dissociation spectrum of an ion derived from the abnormal betaT-5 peptide revealed a new substitution, [beta52(D3)Asp-->Gly], named Hb Hokusetsu. The sequence was confirmed with an automatic sequencer using peptides isolated by reversed phase high performance liquid chromatography. Amplification of the beta-globin exon 2 and nucleotide sequencing revealed a GAT-->GGT mutation in codon 52 corresponding to an Asp-->Gly replacement. Electrospray ionization mass spectrometry analysis of the hemolysate showed a reasonable value of 10.4% for glycated globin. The variant migrated as Hb S on isoelectrofocusing. Hematological analysis revealed normal parameters. The patient's hemolysate showed normal stability in the isopropanol test. Oxygen equilibrium studies on the patient's red blood cells and hemolysate showed no significant change in oxygen affinity or cooperativity.  相似文献   

17.
Hydrogen/deuterium exchange as well as charge state distribution monitored by electrospray ionization mass spectrometry were demonstrated to be a powerful and effective new tool for probing conformational properties of proteins in solution. In this paper, the influence of single amino acid replacements on the global conformation of cytochrome C553 from Desulfovibrio vulgaris Hildenborough using isotopic exchange monitored by electrospray ionization mass spectrometry is reported. Based on their respective charge state distributions and isotopic exchanges, we have differentiated relative stability of mutants and a ladder classification with the order being wild-type > Y64F = Y64L > Y64V > Y64A, under specific conditions of pH, is proposed.  相似文献   

18.
The use of capillary electrophoresis (CE) for the determination of drugs of abuse was explored. A commercial CE system was interfaced with a laboratory-built time-of-flight mass spectrometer (TOFMS) which was equipped with a high-speed data acquisition system to provide accurate monitoring of efficient separations. Ionization of the CE eluent was achieved with an electrospray ionization source. Standard mixtures and seized samples were analyzed either by direct infusion of the analyte solutions or after separation by CE. Detection at the low femtomole level was obtained using CE-TOFMS.  相似文献   

19.
An affinity purification technique was established that allows the selective isolation of 2-iminobiotinylated peptides from proteolytic digest of proteins in order to identify surface-exposed protein domains. Serving as model systems, two photosystem I subunits, PsaD and PsaE from the cyanobacterium Synechococcus elongatus, were overexpressed in Escherichia coli, modified in vitrowith NHS-2-iminobiotin which incorporates 2-iminobiotin at exposed amino groups, and subjected to proteolytic digestion by Glu-C and Arg-C protease, respectively. 2-Iminobiotin-containing proteolytic peptides were subsequently extracted from the proteolytic digests using avidin agarose in a batch procedure and the extracted peptides were separated by HPLC chromatography. The analysis of the peptide maps by electrospray ionization mass spectrometry or N-terminal sequencing showed that avidin-extracted peptide fractions contain almost exclusively 2-iminobiotinylated proteolytic fragments of PsaE or PsaD. No unmodified peptides of PsaD or PsaE were detected. According to this analysis, PsaE is accessible to biotinylation at all of its 7 lysine residues and at its N-terminus. Similarly, all 11 lysine residues of PsaD can be biotinylated and only the N-terminus of PsaD is not accessible.  相似文献   

20.
The conformations of several rationally designed antigenic peptides that mimic, to varying degrees, an antibody-binding region of protein lactate dehydrogenase isozyme (LDH-C4) are investigated by deuterium/hydrogen exchange and electrospray ionization mass spectrometry (ESI-MS). The approach involves monitoring the reverse-exchange of deuterium, incorporated at the labile sites in the peptides, with hydrogen as a function of time by ESI-MS. Idealized forms of a segment of the native antigen are shown to be more conformationally restricted than the native peptide based on level of deuterium that remains incorporated at the labile sites over time. From the number of amide groups of the peptide backbone that retain deuterium, estimates of the helical content of each peptide have been measured that are in close agreement with those determined by Fourier transform infrared (FTIR) spectroscopy in separate experiments. A single amino acid substitution in the idealized helical construct results in a conformational change easily detected by the deuterium exchange ESI-MS method. The approach is shown to be a viable method for characterizing the conformations of protein antigens at the local level and for screening the conformations of antigenic peptides designed to elicit optimal immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号