首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
某铁矿石铁品位是56.36%,主要以赤褐铁矿的形式存在,脉石矿物主要是石英和铝土矿。对该铁矿石采用了悬浮磁化焙烧—磁选工艺实验研究,在给料粒度为-0.074 mm 56.11%,焙烧温度为560℃,总气量为500 mL/min、CO浓度为30%,还原时间为15 min的条件下进行焙烧实验,然后将焙烧产品磨至-0.074 mm 95%,在磁场强度90 kA/m,选别时间5 min的条件下进行弱磁选实验,获得了铁品位64.42%,铁回收率94.49%的高品位铁精矿,为处理难选铁矿石提供了解决办法。   相似文献   

2.
东鞍山某鲕状赤铁矿石铁品位为44.53%、P2O5含量为2.25%。矿石中赤铁矿主要以鲕状集合体形式存在,嵌布粒度微细,属难选矿石,采用传统选矿工艺难以获得理想的选别指标。为给该矿石合理开发利用提供依据,进行了悬浮焙烧-磁选试验。结果表明:在给矿细度为-0.074 mm占75%、总气流量为8 m3/h、H2浓度为40%、焙烧温度为650 ℃、焙烧时间为75 s条件下进行悬浮焙烧,焙烧产品磨细至-0.074 mm占95%,在磁场强度为85.1 kA/m条件下磁选,获得了铁品位为56.73%、回收率为83.96%、磷含量为0.78%的铁精矿,该精矿磷含量较高,还需进一步进行降磷研究。试验结果为我国鲕状赤铁矿石的开发利用提供了参考。  相似文献   

3.
国外某微细粒嵌布的赤铁矿石中有回收价值的元素是铁,含量为44.08%,FeO含量仅为0.14%,主要脉石矿物成分SiO_2和Al_2O_3含量分别为13.44%和5.80%;主要铁矿物为赤铁矿,主要脉石矿物为石英;矿石中99.10%的铁为赤(褐)铁。对悬浮磁化焙烧—弱磁选工艺加工、处理矿石的可行性进行了研究。结果表明,在给料粒度为-0.074 mm占55%,焙烧温度为560℃,CO的浓度为30%,还原时间为20 min,弱磁选给矿粒度为-0.038 mm占95%条件下处理矿石,可获得铁品位为58.29%、铁回收率为91.45%的精矿。悬浮磁化焙烧—弱磁选工是实现该类型铁矿石开发利用的有效工艺。  相似文献   

4.
某复杂难选铁矿石铁含量为55. 88%,铁主要以赤铁矿、褐铁矿形式存在,脉石矿物主要是石英和三水铝石。为探究磁化焙烧—磁选工艺处理该矿石的可行性,进行了选矿试验研究。结果表明,在原料直接烘干、打散(-0.074 mm含量53.41%)、焙烧温度为540℃,CO浓度为40%,焙烧时间为25 min条件下进行焙烧,焙烧产品磨细至-0.1 mm,在磁场强度为56.7 kA/m条件下弱磁选,可获得铁品位63.56%、铁回收率97.18%铁精矿。磁化焙烧技术为这种复杂难选赤褐铁矿的开发利用提供了依据。  相似文献   

5.
针对传统磁化焙烧装备及技术所存在的还原时间长、还原不均匀、能耗及生产成本高等问题,采用悬浮焙烧法处理湖北某鲕状赤铁矿石。结果表明,在给矿细度为-0.074 mm占80%、气体速度为1.4 m/s、H2浓度为40%、还原温度为650 ℃、焙烧时间为10 s条件下,对铁品位为46.31%的鲕状赤铁矿石进行悬浮焙烧,焙烧产品磨细至-0.035 mm占90%后,在磁场强度为85 kA/m条件下磁选,可获得铁品位为58.32%、回收率为85.69%的铁精矿。对焙烧产品进行XRD分析表明,矿石中的赤铁矿经悬浮焙烧后转变为磁铁矿。对悬浮焙烧产品进行磁性分析表明,鲕状赤铁矿中弱磁性铁矿物经悬浮焙烧可快速转变为强磁性铁矿物,焙烧后物料的磁化强度和比磁化率显著提高。悬浮焙烧具有焙烧时间短、热利用效率高、处理能力大等优点,可在较短的时间内实现铁矿石的磁性转变,为难选铁矿石的利用开辟了新的途径。  相似文献   

6.
宣龙式鲕状赤铁矿石磁化焙烧—弱磁选试验   总被引:1,自引:0,他引:1  
宣龙式鲕状赤铁矿石铁品位较高,达48.65%,主要铁矿物为赤铁矿,占总铁的85.84%,其次是碳酸铁,占总铁的9.50%,磁性铁含量较低,仅占总铁的3.12%;脉石矿物主要为石英,磷、铝等有害元素含量均不高。为探索该资源的高效、低耗开发利用方案,采用磁化焙烧—弱磁选工艺进行了选矿试验研究。结果表明,0.2~0 mm的烟煤与-0.074 mm占62%的试样按质量比12%混合,在800℃下焙烧45 min,焙烧产物磨至-0.074 mm占89.2%的情况下进行弱磁选(磁场强度为105.6 k A/m),可得到铁品位为62.50%、铁回收率为85.50%的铁精矿。因此,磁化焙烧—弱磁选工艺适合处理宣龙式鲕状赤铁矿石。  相似文献   

7.
海南某低硫、磷褐铁矿石铁品位为39.28%,主要组成矿物褐铁矿含量占73.86%,主要脉石矿物石英含量占14.94%。矿石中褐铁矿粒度较细,多呈不规则状和鲕状集合体,且有包裹细粒石英的现象,这种复杂的嵌布关系大大增大的铁矿物的回收难度。为确定该矿石的高效开发利用工艺,进行了加工工艺条件研究。结果表明,矿石(-0.074 mm占98%)与焦煤(-0.074 mm占98%)混合造球后经焙烧—磨矿—弱磁选工艺处理,在焦煤用量为15%,焙烧温度为1 200℃,焙烧时间为60 min,焙烧产品磨矿细度为-0.045 mm占66%,弱磁选磁场强度为88 k A/m情况下,获得了铁品位为92.54%、铁回收率为74.19%的铁精矿。造球焙烧—磨矿—弱磁选工艺是实现该资源高效开发利用的有效工艺。  相似文献   

8.
綦江铁矿石主要有用元素铁含量为35.47%,铁主要以赤铁矿和菱铁矿的形式存在,铁在赤铁矿和菱铁矿中分布率分别为45.45%和51.11%。对磨至不同粒度矿石进行悬浮焙烧-弱磁选试验结果表明,磨矿细度为 -0.074 mm占50%时,精矿指标最佳。对磨至-0.074 mm占50%的产品筛析为+0.1、0.074~0.1、0.045~0.074、-0.045 mm 4个粒级,分别进行悬浮焙烧-弱磁选试验。结果表明:给料粒度为0.074~0.1 mm和0.045~0.074 mm时,获得的精矿指标相对较佳。对不同给料粒度焙烧产品的XRD和磁性分析结果表明:+0.1 mm粒级因颗粒粒度较大,反应不完全,仍有部分赤铁矿和菱铁矿因未被还原而存在于还原物料中;0.074~0.1 mm和0.045~0.074 mm粒级焙烧产品中铁矿物主要为磁性较强的磁铁矿;-0.045 mm粒级焙烧产品产生过还原现象,生成了弱磁性的浮氏体。试验结果可以为綦江铁矿石悬浮焙烧工艺优化提供依据。  相似文献   

9.
为开发利用印尼某铁品位为49.42%、含镍0.44%的红土镍矿体顶部覆盖的风化壳,对其进行了还原焙烧—磁选工艺试验。结果表明:在还原剂用量为5%、焙烧温度为800℃、焙烧时间为15 min、焙烧矿水萃冷却后磨细至-0.074 mm占85%、磁场强度为96 k A/m条件下磁选,可获得铁品位为60.60%、回收率为91.60%的铁精矿,为该类型矿石的开发利用提供了依据。  相似文献   

10.
印尼某高铁铝土矿原矿铁品位为 14.06%,铁矿物主要以赤(褐)铁矿形式存在,采用悬浮磁化焙烧—磁 选技术处理高铁铝土矿,并开展了系统的高铁铝土矿悬浮磁化焙烧试验研究。结果表明,悬浮磁化焙烧最佳条件为给 料粒度-0.074 mm占50%、焙烧温度600 ℃、焙烧时间20 min、CO浓度为20%、总气体流量500 mL/min,在此最佳条件下 进行悬浮磁化焙烧试验,焙烧产品在磁场强度为133.6 kA/m的条件下进行弱磁选,最终可获得Al2O3含量68.55%、回收 率为74.43%、铁去除率为65.63%的铝精矿。悬浮磁化焙烧技术实现铁铝高效分离,降低了原矿中铁品位和水分,大幅 度提高了高铁铝土矿的Al2O3含量,达到了除铁提铝的技术目标。  相似文献   

11.
探索性采用悬浮焙烧工艺处理东鞍山分步浮选中矿,研究悬浮焙烧处理弱磁性细粒级的铁物料的过程,为低品位细粒级难选铁物料提供理论和实践基础。针对原矿TFe品位为41.70%的分步浮选中矿,试验采用悬浮焙烧—磁选分选的工艺,最终在总气流量为12 m3/h、氢气浓度40%、还原温度600℃以及焙烧时间32 s的条件下进行悬浮焙烧,焙烧熟料细磨到-0.074 mm占95%后进行弱磁选,最终获得TFe品位60.53%、回收率78.68%的磁选铁精矿产品。悬浮焙烧技术处理分步浮选中矿等细粒级难选铁物料方面具有较好的应用前景。  相似文献   

12.
针对包子铺褐铁矿石进行了微波悬浮磁化焙烧试验研究。结果表明,原矿铁品位为32.89%,赤、褐铁中铁分布率为98.45%,主要杂质Si O2含量为33.88%,有害元素P含量为1.22%。条件试验确定的微波悬浮磁化焙烧条件为:焙烧温度500℃、焙烧时间5 min、微波功率550 W、CO体积分数20%。将焙烧产品磨至-0.045 mm占74.47%,再进行弱磁选(磁场强度120 k A/m),可获得铁品位为58.05%、回收率为90.24%的铁精矿产品。通过化学多元素分析、X射线衍射(XRD)和振动样品磁强计(VSM)分析发现,通过微波磁化焙烧,原矿中的赤、褐铁矿转化为磁铁矿,矿石的饱和磁化强度及比磁化系数得到显著增强,可以通过磁选有效回收铁矿物。  相似文献   

13.
甘肃镜铁山矿采用竖炉磁化焙烧—弱磁选—反浮选工艺处理100~15 mm的镜铁矿石,可获得铁品位58.5%左右、铁回收率78%左右的铁精矿;对15~0 mm的粉矿采用磨矿—强磁选工艺处理,仅能获得铁品位为47.5%左右、铁回收率为60%左右的铁精矿。为了提高粉矿分选指标,改善烧结料的品质,对粉矿中的15~5 mm粒级进行了磁化焙烧—弱磁选试验。结果表明,在煤粉与试样的质量比为2%,煤粉粒度为1~0 mm,焙烧温度为810℃,焙烧时间为60 min,焙烧产物磨矿细度为-0.074 mm占80%,弱磁选磁场强度为91.56 kA/m条件下,可获得铁品位为55.80%、铁回收率为83.97%的铁精矿。  相似文献   

14.
海南石碌铁矿石铁品位为40.21%,主要有害成分硫含量达1.32%,铁主要以赤铁矿的形式存在,分布率达73.56%。为确定该矿石的合理开发利用工艺进行了选矿试验。结果表明,采用预富集—磁化焙烧—弱磁选工艺处理试样,在磨矿细度为-0.074 mm占62.18%的条件下,采用1粗1精1扫、中矿顺序返回反浮选流程脱硫,1次中磁选+1次强磁选预富集,进入磁化焙烧—弱磁选工艺的矿量减少了16.50%,预富集精矿铁品位为45.61%、S含量为0.54%;预富集精矿在还原温度为520℃、还原剂浓度为30%、还原时间为20 min,弱磁选给矿细度为-0.038 mm占90%的情况下可获得铁品位为66.86%、回收率为92.27%的铁精矿,试验指标良好。  相似文献   

15.
云南某高磷铁矿直接还原同步脱磷试验研究   总被引:1,自引:0,他引:1  
肖婉琴 《矿冶》2017,26(3):5-8
云南某铁矿石属于高磷含有多种铁矿物的铁矿石,铁的品位为36.94%,磷的品位为0.93%。针对矿石中磷含量高、铁矿物种类多的特点,选定了直接还原焙烧同步脱磷工艺。在无烟煤用量为40kg/t、脱磷剂HJ用量为200 kg/t、焙烧温度为1 150℃、焙烧时间为40 min、焙烧砂一段磨矿细度为-0.074 mm占75%、一段磁场强度为95.5 k A/m、二段磨矿细度为-0.043 mm占80%、二段磁场强度为67.67 k A/m的条件下,可获得铁品位为91.12%、回收率为90.05%、磷品位为0.14%的高铁精矿。  相似文献   

16.
某强磁预选精矿TFe品位为39.09%,主要含铁矿物为赤褐铁矿和菱铁矿,分布率分别为80.97%和17.14%。为充分提高该矿石的利用率,对其采用悬浮焙烧-磁选工艺进行研究。试验结果表明:在给矿细度为-74μm 64.43%、总气体流量10 m~3/h、氢气浓度30%、焙烧温度650℃、焙烧时间18 s的条件下进行悬浮焙烧,焙烧产品经弱磁选可获得精矿TFe品位55.64%、回收率92.55%的指标。对焙烧产品进行XRD分析表明悬浮焙烧过程已将大部分弱磁性铁矿物转变为磁铁矿。悬浮焙烧技术具有产品质量均匀、焙烧时间短、传热效率高等优点,为我国复杂难选铁矿石的高效利用开辟了新的途径。  相似文献   

17.
对大西沟菱铁矿石在中性气氛条件下进行磁化焙烧—弱磁选试验研究。结果表明,在焙烧温度为650℃、焙烧时间为40 min条件下直接焙烧,焙烧产品磨细至-0.043 mm占95%,在磁场强度为104 k A/m条件下弱磁选,获得的精矿铁品位为57.09%、铁回收率为90.17%,Si O2含量为12.03%,精矿还需进行提铁降硅试验。焙烧使矿石中的菱铁矿和褐铁矿转变为强磁性的磁铁矿,焙烧后物料的磁化强度和比磁化率均显著提高,增大了物料中铁矿物与脉石矿物的磁性差异,因而可通过弱磁选进行有效分离。  相似文献   

18.
胡芳  陈泽宗 《矿冶工程》2021,41(6):81-83
对铁品位42.36%的某微细粒难选铁矿尾矿进行了选矿工艺研究,制定了磁化焙烧-弱磁选的选矿工艺流程,并研究了配煤量、焙烧温度、焙烧时间和磨矿细度等试验条件对铁回收效果的影响。结果表明,在配煤量5%、焙烧温度800 ℃、焙烧时间30 min的适宜试验条件下焙烧,所得焙烧矿磨至-0.074 mm粒级占75.83%后,经一粗一精弱磁选(磁场强度均为96 kA/m),可获得铁品位56.84%、回收率73.74%的铁精矿。  相似文献   

19.
采用磁化焙烧—磁选—反浮选流程对恩施某细粒嵌布鲕状赤铁矿矿石进行了选矿试验。结果表明,矿石在还原剂用量为7%、焙烧温度为850℃、焙烧时间为90 min条件下焙烧后,磨细至-0.074 mm占85%,在磁场强度为278.67 kA/m条件下弱磁选,磁选精矿在NaOH用量为1 500 g/t、淀粉用量为1 200 g/t、CaO用量为900 g/t、RA-715用量为750g/t、2#油用量为20 g/t条件下进行浮选试验,可以获得铁品位为63.78%,回收率为58.72%,含磷0.25%的铁精矿。  相似文献   

20.
贵州某褐铁矿石为低硫磷褐铁矿石,铁品位为47.14%,铁矿物主要有褐铁矿,纤铁矿、硬锰矿、软锰矿、黄铁矿少量,褐铁矿呈不规则胶状、土状分布,与脉石矿物共生关系密切,磨矿过程不仅难以实现有用矿物与脉石矿物的有效分离,而且容易泥化,因而直接强磁选或重选均难以获得理想的分选指标。为解决该褐铁矿石资源的开发利用问题,采用磁化焙烧—磁选工艺对该矿石进行了选矿试验。结果表明,在无烟煤(2~0 mm)与矿样(3~0 mm)质量比为5%,焙烧温度为850℃,保温时间为40 min,焙烧产物的磨矿细度为-0.074 mm占97.5%,中磁选磁场强度为218.95 kA/m情况下,可获得铁品位为66.23%、铁回收率为97.53%的铁精矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号