首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microarchitecture of trabecular bone is a very important component of bone quality in osteoporosis and a determinant of vertebral fracture in men with low bone mineral density (BMD). In contrast to women, male osteoporosis is, in most cases, secondary. The relationships between microarchitecture and different risk factors have never been evaluated in men. About 152 men with low BMD at the lumbar spine or hip (BMD, T-score < -2.5) were included in this study. Risk factors were: age, BMI, alcohol intake, corticosteroid therapy, hypogonadism, and chronic diseases. Transiliac bone biopsies were obtained and histomorphometry was done on an image analyzer; the following parameters were measured: cortical thickness (Ct.Th), trabecular bone volume (BV/TV), trabecular thickness (Tb.Th), separation (Tb.Sp) and number (Tb.N), interconnectivity Index (ICI), star volume of the bone marrow, and strut analysis with node and free-end count. The 50 men with two risk factors had a lower BMD, lower Ct.Th and a significant higher star volume than those with one factor or idiopathic osteoporosis. The 26 men with at least three risk factors, had a lower BMD, a reduction of BV/TV and Ct.Th and a marked disorganization of the trabecular network (increased Tb.Sp, ICI, star volume, and free-end to free-end struts). The prevalence of vertebral fractures was higher in these patients. When the main risk factor was considered, a marked decrease in trabecular bone connectivity was observed in hypogonadic men. In osteoporotic men, higher the number of risk factors, lower the connectivity of trabecular network and higher the vertebral fracture risk.  相似文献   

2.
The purpose of this study was to determine the effects of elbow joint angle on mechanical properties, as represented by ultimate load, failure strain and elastic modulus, of bone-tendon specimens of common extensor tendon of the humeral epicondyle. Eight pairs of specimens were equally divided into two groups of 8 each, which selected arbitrarily from left or right side of each pair, positioned at 45° and 90° of elbow flexion and subjected to tension to failure in the physiological direction of the common extensor tendon. For comparison of the differences in the failure and elastic modulus between tendon and the bone-junction, data for both were evaluated individually. Significant reduction in ultimate load of bone-tendon specimens was shown to occur at 45°. The values obtained from the bone-tendon junctions with regard to the failure strain were significant higher than those from tendon in both loading directions, but the largest failure strain at the bone-tendon junction was found at 45°. The elastic modulus was found to decrease significantly at the bone-tendon junction when the loading direction switched from 90° to 45°. Histological observation, after mechanical tensile tests, in both loading directions showed that failure occurred at the interface between tendon and uncalcified fibrocartilage in the thinnest fibrocartilage zone of the bone-tendon junction. We concluded that differences in measured mechanical properties are a consequence of varying the loading direction of the tendon across the bone-tendon specimen.  相似文献   

3.
The geometric and transport properties of trabecular bone are of particular interest for medical engineers active in orthopaedic applications and more specifically in hard tissue implantations. This article resorts to computational methods to provide some understanding of the geometric and transport properties of vertebral trabecular bone. A fuzzy distance transform algorithm was used for geometric analysis on the pore scale, and a lattice Boltzmann method (LBM) for the simulation of flow on the same scale. The transport properties of bone including the pressure drop, elongation, and shear component of dissipated energy, and the tortuosity of the bone geometry were extracted from the results of the LBM flow simulations. Whenever suitable, dimensionless numbers were used for the analysis of the data. The average pore size and distribution of the bone were found to be 746 microm and between 75 and 2940 microm, respectively. The permeability of the flow in the cavities of the specific bone sample was found to be 5.05 x 10(-8) m2 for the superior-inferior direction which was by a factor of 1.5-1.7 higher than the permeability in the other two anatomical directions (anterior-posterior). These findings are consistent with experimental results found 3 years prior independently. Tortuosity values approached 1.05 for the superior-inferior direction, and 1.13 and 1.11 for the other two perpendicular directions. The low tortuosities result mainly from the large bone porosity of 0.92. The flow on the pore scale seems to be shear dominated but 30 per cent of the energy dissipation was because of elongational effects. The converging and diverging geometry of the bone explains the significant elongation and deformation of the fluid elements. The transition from creeping flow (the Darcy regime), which is of interest to vertebral augmentation and this study, to the laminar region with significant inertia effects took place at a Reynolds number of about 1-10, as usual for porous media. Finally, the authors wish to advise the readers on the significant computational requirements to be allocated to such a virtual test bench.  相似文献   

4.
Osteoporosis is one of the most dangerous skeletal diseases in relation to the highest fracture risk in vertebral bones. A considerable amount of work has been done to investigate the biomechanical characteristics of osteoporotic vertebral trabecular bone. Previous researchers studied the elastic characteristics using a micro-finite element (micro-FE) model, used to analyze realistic trabecular architectures in full detail, based on micro-computed tomography (μCT). Since osteoporotic compression fracture is closely associated with the mechanical characteristics of the vertebral trabecular bone and there were few micro-FE models to account for all of the elastic and plastic characteristics in vertebral trabecular bone, this study analyzed the effect of voxel resolution on the plastic characteristics as well as the elastic characteristics of three-dimensional (3D) osteoporotic lumbar trabecular bone models. Also, we evaluated the effect of specimen geometry on this problem. It has been reported that a cubic specimen with side length 6.5mm was suggested as standard specimens for the experimental test of trabecular bone. Current study examined whether or not the effect of the specimen geometry on the experimental test may be also applied to the simulated compression test of trabecular bone specimens. The experimental test employing the rapid prototyping (RP) technique and INSTRON test machine is performed to indirectly validate the results of the simulated compression test by micro-FE analysis. The review finished with the verification about the effects of the simulated compression test.  相似文献   

5.
Osteoporosis, often termed the 'silent epidemic', has been defined as 'a decrease in bone mass and architectural deterioration of bone tissue, leading to enhanced bone fragility and consequent increase in fracture risk'. In the United Kingdom alone, the annual health costs are in excess of 750 million Pounds, with 60,000 patients suffering a hip fracture each year. A quarter of these will die within 12 months of their fracture, half of the remainder will never regain independent living. The established procedure for assessing the risk of osteoporotic fracture is via bone mineral density (BMD) assessment using dual-energy X-ray absorptiometry (DXA). However, DXA is an expensive technique and is not widely available. Within the past 15 years, ultrasound assessment of bone has rapidly advanced in scientific understanding, technical development and clinical utility. Measurements of cancellous bone (particularly at the calcaneus) are generally performed in preference to those of cortical bone (tibial cortex). There are currently 15 commercial systems available and over 3500 systems are in use world-wide. The low cost and portability offered by ultrasound systems should enable an integrated community-based screening programme to be established in the near future. Ultrasound measurements of bone are generally obtained using transmission rather than pulse-echo techniques owing to its highly attenuating nature. Ultrasound velocity and attenuation measurements are utilized. For velocity, there are well-defined fundamental relationships describing the dependence upon the elasticity and density of bone.  相似文献   

6.
Ultrasound waves are propagated in upper frequencies from the limit of human hearing and have lower wavelength and more attenuation coefficient. Ultrasound in higher frequencies and low powers has a good sensitivity and no effects on mechanical or chemical properties of material but only causes vibrations in the molecules. High power ultrasound with lower frequencies has the acoustic energy packages which induces physical, mechanical, and chemical changes in the material. The major reason in this process is the cavitation phenomenon which provides high temperature and pressure by collapsing the micro-bubbles. Ultrasound applications are classified into high intensity and low intensity. Analytical ultrasound involves the monitoring and quality control of dairy products based on the physicochemical variations during storage or processing. High intensity ultrasound has been employed for processing applications such as pasteurization, homogenization, fermentation, and extraction. This paper presents a comprehensive review on the potential applications of ultrasonic techniques in milk industry.  相似文献   

7.
To more accurately assess osteoporotic hip fracture risk in a specific patient, a dual-energy X-ray absorptiometry (DXA)-based finite element model was constructed from the patient's femur DXA image. The outermost contour of the femur bone segmented from the DXA image was used to generate a finite element mesh. Bone mechanical properties, such as Young's modulus, are correlated with areal bone mineral density (BMD) captured in the DXA image. A quasi-static loading condition representing a sideway fall was applied to the finite element model. Three fracture risk indices were introduced and expressed as ratios of internal forces caused by impact forces occurring in sideway fall to bone ultimate cross-section strength at the three critical locations, i.e. the femoral neck, the intertrochanteric region, and the subtrochanteric region. The proposed finite element modelling procedure was validated against six representative clinical cases extracted from the Manitoba BMD database, where initial and follow-up DXA images have been taken to monitor longitudinal variation of areal BMD in individual patients. It was found from the clinical validation that variations in the proposed fracture risk indices have the same trends as those indicated by the conventional areal BMD and T-score. In addition, by the three proposed fracture risk indices it is possible to further identify the specific fracture location. It was also found that for the same subject, the variations in the three fracture risk indices have quite different magnitudes, with intertrochanteric region the largest and subtrochanteric region the smallest, which is probably owing to the different content of trabecular and cortical bones in the three regions. With further development, it is promising that the proposed DXA-based finite element model will be a useful tool for accurate assessment of osteoporosis development and for treatment monitoring.  相似文献   

8.
Control of bone cement volume (PMMA) may be critical for preventing complications in vertebroplasty, the percutaneous injection of PMMA into vertebra. The purpose of this study was to predict the optimal volume of PMMA injection based on CT images. For this, correlation between PMMA volume and textural features of CT images was examined before and after surgery to evaluate the appropriate PMMA amount. The gray level run length analysis was used to determine the textural features of the trabecular bone. Estimation of PMMA volume was done using 3D visualization with semi-automatic segmentation on postoperative CT images. Then, finite element (FE) models were constructed based on the CT image data of patients and PMMA volume. Appropriate material properties for the trabecular bone were assigned by converting BMD to elastic modulus. Structural reinforcement due to the changes in PMMA volume and BMD was assessed in terms of axial displacement of the superior endplate. A strong correlation was found between the injected PMMA volume and the area of the intertrabecular space and that of trabecular bone calculated from the CT images (r-0.90 and −0.90, respectively). FE results suggested that vertebroplasty could effectively reinforce the osteoporotic vertebra regardless of BMD or PMMA volume. Effectiveness of additional PMMA injection tended to decrease. For patients with BMD well lower than 50mg/ml, injection of up to 30% volume of the vertebral body is recommended. However, less than 30% is recommended otherwise to avoid any complications from excessive PMMA because the strength has already reached the normal level.  相似文献   

9.
A one dimensional poroelastic model of trabecular bone was developed to investigate the pore pressure effect on mechanical behavior. The poroclastic properties were determined based upon the assumed drained Poisson's ratio of 0.3 and the experimental results reported in the literature. Even though the free escape of the fluid through the loading end was allowed during deformation, model predictions showed that the pore pressure generation within the trabecular bone would cause significant variations in total stress. The total stress increase resulted in a stiffening of the trabecular bone, which supports the concept of hydraulic stiffening that has been advocated by several investigators. Model predictions showed a good agreement to the mechanical behaviors of trabecular bone specimens with marrow in a uniaxial strain condition observed in a previous study. These results support the hypothesis that the trabecular bone is poroelastic and the pore pressure effect on the mechanical behavior at the continuum level is significant. Thus, the incorporation of the fluid effect in future studies is recommended to improve our understanding of trabecular bone mechanics.  相似文献   

10.
This study examines the relation between the nature of acoustic emission signals emitted from cancellous bone under compression and the mechanical properties of the tissue. The examined bone specimens were taken from 12 normal, 31 osteoporotic and six osteoarthritic femoral heads. The mechanical behaviour of the osteoporotic bone specimens was found to be significantly different from that of the normal specimens both in the pre-yield and post-yield ranges. In the osteoarthritic bones only the elastic behaviour was significantly different. The rates of acoustic events before yield and beyond it were found to be significantly higher both in the osteoporotic and osteoarthritic bone specimens. The average peak amplitude of the signals was also significantly higher in the diseased bones. Stepwise regression analysis showed that a combination of the acoustic emission parameters could significantly predict some mechanical properties of the bone. The energy absorbed during compression and the ultimate compressive stress of the specimens could be estimated from the rate of pre-yield acoustic events, the average amplitude of the signals and the rate of post-yield events. However, the explanation power of the acoustic emission parameters was only moderate. The nature of acoustic emission signals was thus demonstrated to be a potential tool for assessing bone quality.  相似文献   

11.
In this investigation the pulse-echo technique was validated as a method that could be used to monitor the complete polymerization of acrylic bone cement in a surgical theatre. Currently, orthopaedic surgeons have no objective method to quantify the state of cure of bone cement as it progresses through its polymerization cycle. Clear benefits of the pulse-echo technique are that it is easy to use, non-invasive, and non-destructive. Furthermore, the test results were found to be highly reproducible with minor deviations. Three proprietary cements were used to confirm the validity of the technique; CMW Endurance, Palacos R and Simplex P. The results showed that the acoustic properties of bone cement clearly demonstrated a relationship with the different stages of polymerization, and in particular with the transitions between the waiting, dough, and setting phases. Additionally, the cure time of the poly(methyl methacrylate) cements consistently correlated with the attainment of 75 per cent of the average maximum velocity of sound value. The measured cure times concurred with the ISO and ASTM standards. Moreover, measurements of the final sound velocity and broadband ultrasonic attenuation correlated strongly with the density and mechanical properties of the cured bone cement samples.  相似文献   

12.
Areal bone mineral density (aBMD) is the most common surrogate measurement for assessing the bone strength of the proximal femur associated with osteoporosis. Additional factors, however, contribute to the overall strength of the proximal femur, primarily the anatomical geometry. Finite element analysis (FEA) is an effective and widely used computer-based simulation technique for modelling mechanical loading of various engineering structures, providing predictions of displacement and induced stress distribution due to the applied load. FEA is therefore inherently dependent upon both density and anatomical geometry. FEA may be performed on both three-dimensional and two-dimensional models of the proximal femur derived from radiographic images, from which the mechanical stiffness may be predicted. It is examined whether the outcome measures of two-dimensional FEA, two-dimensional, finite element analysis of X-ray images (FEXI), and three-dimensional FEA computed stiffness values of the proximal femur are more sensitive than aBMD to changes in trabecular bone density and femur geometry. It is assumed that if an outcome measure follows known trends with changes in density and geometric parameters, then an increased sensitivity will be indicative of an improved prediction of bone strength. All three outcome measures increased non-linearly with trabecular bone density, increased linearly with cortical shell thickness and neck width, decreased linearly with neck length, and were relatively insensitive to neck-shaft angle. For femoral head radius, aBMD was relatively insensitive, with two-dimensional FEXI and three-dimensional FEA demonstrating a non-linear increase and decrease in sensitivity respectively. For neck anteversion, aBMD decreased non-linearly, whereas both two-dimensional FEXI and three-dimensional FEA demonstrated a parabolic-type relationship, with the maximum stiffness being achieved at an angle of approximately 15 degrees. Multi-parameter analysis showed that all three outcome measures demonstrated their highest sensitivity to a change in cortical thickness. When changes in all input parameters were considered simultaneously, three and two-dimensional FEA had statistically equal sensitivities (0.41 +/- 0.20 and 0.42 +/- 0.16 respectively, p = ns) that were significantly higher than the sensitivity of aBMD (0.24 +/- 0.07; p = 0.014 and 0.002 for three-dimensional and two-dimensional FEA respectively). This simulation study suggests that since mechanical integrity and FEA are inherently dependent on anatomical geometry, FEXI stiffness, being derived from conventional two-dimensional radiographic images, may provide an improvement in the prediction of bone strength of the proximal femur than currently provided by aBMD.  相似文献   

13.
A new modelling approach, using a combination of shell and solid elements, has been adopted to develop a realistic three-dimensional finite element (FE) model of the human scapula. Shell elements were used to represent a part of the compact bone layer (i.e. the outer cortical layer) and the very thin and rather flat part of the scapula--infraspinous fossa and supraspinous fossa respectively. Solid elements were used to model the remaining part of the compact bone and the trabecular bone. The FE model results in proper element shapes without distortion. The geometry, material properties and thickness were taken from quantitative computed tomography (CT) data. A thorough experimental set-up for strain gauge measurement on a fresh bone serves as a reference to assess the accuracy of FE predictions. A fresh cadaveric scapula with 18 strain gauges fixed at various locations and orientations was loaded in a mechanical testing machine and supported at three locations by linkage mechanisms interconnected by ball joints. This new experimental set-up was developed to impose bending and deflection of the scapula in all directions unambiguously, in response to applied loads at various locations. The measured strains (experimental) were compared to numerical (FE) strains, corresponding to several load cases, to validate the proposed FE modelling approach. Linear regression analysis was used to assess the accuracy of the results. The percentage error in the regression slope varies between 9 and 23 per cent. It appears, as a whole, that the two variables (measured and calculated strains) strongly depend on each other with a confidence level of more than 95 per cent. Considering the complicated testing procedure on a fresh sample of scapula, the high correlation coefficients (0.89-0.97), the low standard errors (29-105 micro epsilon) and percentage errors in the regression slope, as compared to other studies, strongly suggest that the strains calculated by the FE model can be used as a valid predictor of the actual measured strain. The model is therefore an alternative to a rigorous three-dimensional model based on solid elements only, which might often be too expensive in terms of computing time.  相似文献   

14.

Short carbon fiber (SCF) reinforced polylactic acid (PLA) composites were fabricated by extrusion printing, and the effects of process parameters and surface treatments on the mechanical properties of composites were studied. Based on the rheological properties of composites and the extrusion process simulation, pure PLA specimens and PLA/SCF specimens were manufactured under different printing parameters. Three kinds of surface treatment were adopted to improve the mechanical properties. The experimental results show that SCF can effectively improve the tensile strength and bending strength, but the compressive strength decreased. The specimen had the best mechanical properties when the layer height was 0.1 mm and the nozzle diameter was 0.6 mm. The mechanical properties can be further improved by coupling agent coating method, and the compressive strength was even higher than that of pure PLA specimen. The research in this paper can provide a reference for the fabrication of thermoplastic composites with excellent mechanical properties by extrusion printing.

  相似文献   

15.
Polymeric carbon nanotube (CNT) nanocomposites have unique mechanical, electrical, and thermal properties. Anisotropy can be induced depending on the alignment of the CNT fillers within polymeric composites, which is known to affect material properties. In order to investigate the effects of CNT alignments in micromechanical scribing using a single crystal diamond tool, a microindenter–scriber system was developed. Multiwalled carbon nanotube–polystyrene (MWCNT–PS) samples with varying CNT concentrations were prepared through a microinjection molding process, where the injection enables the partial alignment of CNTs in the flow direction through high shear stress. A mechanistic scribing force model was proposed based on the material properties that could be obtained using the microindentation techniques. Scribing experiments were performed in the parallel and perpendicular directions to the CNT alignment. Forces in three axes were measured and analyzed to identify three unknown parameters—the shearing, plowing, and adhesion friction coefficients. The resulting coefficients for scribing perpendicular to the CNT alignment showed distinguishable trends from scribing parallel to the CNT alignment as the CNT loadings increased. Their linear trends in relation to the material properties identified from indentation techniques can be used to predict microscribing parameters and resulting cutting forces, in combination with the proposed mechanistic model.  相似文献   

16.
Quantification and visualization of anisotropy in trabecular bone   总被引:2,自引:0,他引:2  
A number of methods for measuring anisotropy in trabecular bone using high‐resolution X‐ray computed tomography exist, which give different answers but have not been compared in detail. In this study, we examine the mean‐intercept length (MIL), star volume distribution (SVD) and star length distribution (SLD) methods, their algorithmic implementation for three‐dimensional (3D) data, and how their results relate to each other. A uniform ordered sampling scheme for determining which orientations to sample during analysis enhances the reproducibility of anisotropy and principal component direction determinations, with no evident introduction of biasing. This scheme also facilitates the creation of a 3D rose diagram that can be used to gain additional insights from the data. The directed secant algorithm that is frequently used for traversing pixel and voxel grids for these calculations is prone to bias unless a previously unreported normalization is used. This normalization ameliorates the bias present when using cubic voxels, and also permits calculations on data sets in which the slice spacing is not equal to the pixel spacing. Overall, the three methods for quantification of anisotropy give broadly similar results, but there are systematic divergences that can be traced to their differences in data and processing, and which may impact on their relative utility in estimating mechanical properties. Although discussed in the context of computed tomography of trabecular bone, the methods described here may be applied to any 3D data set from which fabric information is desired.  相似文献   

17.
The purpose of this work is to discuss the microstructures and mechanical properties of thixoforged helical gearbox caps. The mechanical properties of semi-solid components can be improved by controlling the process parameters such as solid fraction of alloy, die temperature, applied pressure, punch velocity, and heat treatment conditions. In this paper, the effects of forming parameters on the microstructures and mechanical properties of thixoforged A356 helical gearbox caps with an arbitrary shape are studied. The mechanical characteristics were investigated by changing the applied pressure, die temperature, specimen temperature and holding time. The results showed that by increasing the applied pressure from 100 MPa to 150 MPa, the average grain diameter was decreased about 7% and the shape factor was increased about 11%. Also, by increasing the die temperature, the hardness and forming load were decreased about 13% and 21%, respectively. The results illustrated that by increasing the specimen temperature and holding time, there would be an increase in the grain size of primary α-Al phase, so the hardness of the specimens is decreased.  相似文献   

18.
The aim of this paper was to propose a novel approach to the ultrasound (US) characterization of human bones through an improved measurement of the apparent integrated backscatter (AIB). Four intact human femoral heads were studied ex vivo in their physiologic morphological configuration, including cartilaginous, cortical and trabecular regions. Each sample underwent an US acquisition performed with a clinically-available echographic device and a micro-computed tomography (micro-CT) scan, whose spatial resolution was preliminarily optimized for this specific purpose. A dedicated US signal compensation was employed in the AIB computation, to take into account the variability of sample-probe distance and cortical bone thickness. Obtained results showed an appreciable global correlation between AIB and the trabecular bone volume fraction as quantified by the micro-CT parameter BV/TV (|r| = 0.69). The proposed approach has interesting perspectives for a clinical translation as an innovative method for in vivo US measurement of proximal femur bone density.  相似文献   

19.
It is desirable to perform nondestructive evaluation (NDE) to assess material properties and part homogeneity because the manufacturing of carbon/carbon brake disks requires complicated and costly processes. In this work several ultrasonic techniques were applied to carbon/carbon brake disks (322mmod, 135mmid) for the evaluation of spatial variations in material properties that are attributable to the manufacturing process. In a large carbon/carbon disk manufactured by chemical vapor infiltration (CVI) method, the spatial variation of ultrasonic velocity was measured and found to be consistent with the densification behavior in CVI process. Low frequency (e.g., 1-5MHz) through-transmission scans based on both amplitude and time-of-flight of the ultrasonic pulse were used for mapping out the material property inhomogeneity. Images based on both the amplitude and the time-of-flight of the transmitted ultrasonic pulse showed significant variation in the radial direction. The radial variations in ultrasonic velocity and attenuation were attributed to a density variation caused by the more efficient densification of pitch impregnation near theid andod and by the less efficient densification away from exposed edged of the disk. Ultrasonic velocities in the edges of the disk. Ultrasonic velocities in the thickness direction were also measured as a function of location using dry-coupling transducers; the results were consistent with the densification behavior. However, velocities in the in-plane directions (circumferential and radial) seemed to be affected more by the relative contents of fabric and chopped fiber, and less by the void content.  相似文献   

20.
本文研究了基于超声造影剂的血流运动场估计与显示技术,通过在血液中注入超声造影剂作为示踪粒子,对造影谐波图像进行时域相关处理,可得到成像部位的二维流场分布图。相对于常规Doppler方法中用Doppler回波信号的频偏计算流速值,该技术可直接从超声图像提取与夹角无关的流速矢量信息。本文通过流动模型验证该方法,浸入超声水槽中的乳胶管中流动着血液替代品,沿水流方向进行超声成像,对实验所得的造影后的B超图像以及谐波图像,用一种节省计算量的多尺度相关算法进行处理,并相互比较。结果显示,谐波图像相对B超基波图像具有更高的信杂比,从根本上解决了基波图像低信噪比对时域相关测量精度的限制,可以得到与夹角无关的二维血流场分布图,该方法是医学和有关工业领域中超声流场测量的一种有效的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号