首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Ni, Fe2O3, and CNT were added to Mg. The content of the additives was about 20 wt % with that of Fe2O3 6 wt%. The contents of about 20 wt % additives and 6 wt% Fe2O3 are known optimum ones to improve the reaction rates of Mg with H2. Samples with compositions of 80 wt% Mg–14 wt% Ni–6 wt% Fe2O3 (named as Mg–14Ni–6Fe2O3), and 78 wt% Mg–14 wt% Ni–6 wt% Fe2O3–2 wt% CNT (named as Mg–14Ni–6Fe2O3–2CNT) were prepared by reactive mechanical grinding. The hydriding and dehydriding properties of these samples were then measured, and the effects of Ni, Fe2O3, and CNT addition on the hydriding and dehydriding rates of Mg-based alloys were investigated by comparing their hydrogen-storage properties with those of pure Mg and Mg–10 wt% Fe2O3.  相似文献   

2.
MgH2, rather than Mg, was used as a starting material in this work. A sample with a composition of MgH2–10Ni–4Ti was prepared by reactive mechanical grinding. Activation of the sample was completed after the first hydriding cycle. At n = 1, the sample desorbed 2.53 wt% H for 10 min, 3.99 wt% H for 20 min, 4.58 wt% H for 30 min, and 4.68 wt% H for 60 min at 593 K under 1.0 bar H2. At n = 2, the sample absorbed 3.59 wt% H for 5 min, 4.55 wt% H for 25 min, and 4.60 wt% H for 45 min at 593 K under 12 bar H2. The inverse dependence of the hydriding rate on the temperature in the initial stage and the normal dependence of the hydriding rate on the temperature in the later stage were discussed. The rate-controlling step for the dehydriding reaction of activated MgH2–10Ni–4Ti was analyzed as the chemical reaction at the hydride/α-solid solution interface.  相似文献   

3.
A sample with a composition of 95 wt% Mg-5 wt% NbF5 (named Mg-5NbF5) was prepared by reactive mechanical grinding using Mg instead of MgH2 as a starting material. Its hydriding and dehydriding rates were then measured under nearly constant hydrogen pressures. The activation of Mg-5NbF5 was not required, and Mg-5NbF5 had an effective hydrogen storage capacity, which was defined as the quantity of hydrogen absorbed for 60 min, of 5.50 wt%. At the first cycle (n = 1) at 593 K, the sample absorbed 4.37 wt% H for 5 min and 5.50 wt% H for 30 min under 12 bar H2, and desorbed 1.03 wt% H for 5 min, 4.66 wt% H for 30 min, and 5.43 wt% H for 60 min under 1.0 bar H2. Reactive mechanical grinding of Mg with NbF5, which formed MgH2, MgF2, NbH2, and NbF3 by the reaction of 11 Mg + 7NbF5 + 3H2 → MgH2 + 10MgF2 + 2NbH2 + 5NbF3, is considered to create defects, to produce reactive clean surfaces, and to reduce the particle size of Mg. The XRD pattern of Mg-5NbF5 dehydrided at n = 3 revealed Mg, small amounts of β-MgH2 and MgO, and very small amounts of MgF2 and NbH2. An increase in the dehydriding rate of Mg-5NbF5 was attempted by adding Ni to Mg-5NbF5. Mg-5NbF5 had higher initial hydriding and dehydriding (after the incubation period) rates and a larger effective hydrogen storage capacity than Mg-10NbF5, Mg-10MnO, and Mg-10Fe2O3, which were reported to have quite high hydriding rate and/or dehydriding rate.  相似文献   

4.
A sample composition has been designed based on previously reported data. An 80 wt%Mg–13.33 wt%Ni–6.67 wt%Fe (referred to as Mg–13.33Ni–6.67Fe) sample exhibited higher hydriding and dehydriding rates after activation and a larger hydrogen storage capacity compared to those of other mixtures prepared under similar conditions. After activation (at n = 3), the sample absorbed 4.60 wt%H for 5 min and 5.61 wt%H for 60 min at 593 K under 12 bar H2. The sample desorbed 1.57 wt%H for 5 min and 3.92 wt%H for 30 min at 593 K under 1.0 bar H2. Rietveld analysis of the XRD pattern using FullProf program showed that the as-milled Mg–13.33Ni–6.67Fe sample contained Mg(OH)2 and MgH2 in addition to Mg, Ni, and Fe. The Mg(OH)2 phase is believed to be formed through the reaction of Mg or MgH2 with water vapor in the air. The dehydrided Mg–13.33Ni–6.67Fe sample after hydriding-dehydriding cycling contained Mg, Mg2Ni, MgO, and Fe.  相似文献   

5.
95%(gravity cast Mg–23.5Ni)–-5%Nb2O5 alloy was prepared by horizontal ball milling in n-hexane of gravity cast Mg–23.5wt%Ni with Spex milled Nb2O5. Melt spun Mg–23.5wt%Ni after heat treatment at 523 K for 1 h was also ground by planetary ball milling with finer Nb2O5 prepared by milling with NaCl. The activated 90%(melt spun Mg–23.5Ni)–10%Nb2O5 alloy shows higher hydriding and dehydriding rates than the activated 95%(gravity cast Mg–23.5Ni)–5%Nb2O5 alloy, thanks to the homogeneous distribution of fine Mg2Ni phase in melt spun Mg–23.5Ni and the finer Nb2O5 addition to melt spun Mg–23.5Ni, which leads to the effective diminution of the Mg particle size. The activated 90%(ms Mg–23.5Ni)–10%Nb2O5 alloy absorbs 4.70 wt%H at 573 K under 12 bar H2 for 10 min, and desorbs 4.75 wt%H at 573 K under 1.0 bar H2 for 25 min.  相似文献   

6.
Mg–15 wt%Ni–5 wt%Fe2O3 (Mg155) was prepared by reactive mechanical grinding (RMG). Mg155 exhibited high hydriding and dehydriding rates even at the first cycle, and its activation was completed after only two hydriding–dehydriding cycles. The activated Mg155 absorbed 5.06 and 5.38 wt% of hydrogen, respectively, for 5 and 60 min at 573 K under 12 bar H2. It desorbed 1.50 and 5.28 wt% of hydrogen, respectively, for 5 and 60 min at 573 K under 1.0 bar H2. The initial hydrogen absorption rate decreased, but the hydrogen desorption rate increased rapidly with an increase in temperature from 563 K to 603 K. The rate-controlling step for the dehydriding reaction in a range from F ? 0.20 to F ? 0.75 is considered to be the chemical reaction at the Mg hydride/α-solid solution interface. The absorption and desorption PCT curves exhibited two plateaus at 573 K. The hydrogen-storage capacity of the activated Mg155 was about 6.43 wt% at 573 K.  相似文献   

7.
Among samples of Mg-Ni, Mg-Ni-5Fe2O3, and Mg-Ni-5Fe, Mg-Ni-5Fe had the highest hydriding and dehydriding rates. For the as-milled Mg-Ni-5Fe alloy and the hydrided Mg-Ni-5Fe alloy after activation, the weight percentages of the constituent phases were calculated using the FullProf program. The creation of defects and the diminution of Mg particle size through reactive mechanical grinding and hydriding-dehydriding cycling, and the formation of the Mg2Ni phase are considered to increase the hydriding and dehydriding rates. Mg-14Ni-2Fe-2Ti-2Mo had higher hydriding and dehydriding rates than did any of the other samples (Mg-Ni, Mg-Ni-5Fe2O3, Mg-Ni-5Fe, and Mg-14Ni-6Fe2O3) prepared in this work.  相似文献   

8.
In this work, differently from our previous work, MgH2 instead of Mg was used as a starting material. Ni, Ti, and LiBH4 with a high hydrogen-storage capacity of 18.4 wt% were added. A sample with a composition of MgH2–10Ni–2LiBH4–2Ti was prepared by reactive mechanical grinding. MgH2–10Ni–2LiBH4–2Ti after reactive mechanical grinding contained MgH2, Mg, Ni, TiH1.924, and MgO phases. The activation of MgH2–10Ni–2LiBH4–2Ti for hydriding and dehydriding reactions was not required. At the number of cycles, n = 2, MgH2–10Ni–2LiBH4–2Ti absorbed 4.09 wt% H for 5 min, 4.25 wt% H for 10 min, and 4.44 wt% H for 60 min at 573 K under 12 bar H2. At n = 1, MgH2–10Ni–2LiBH4–2Ti desorbed 0.13 wt% H for 10 min, 0.54 wt% H for 20 min, 1.07 wt% H for 30 min, and 1.97 wt% H for 60 min at 573 K under 1.0 bar H2. The PCT (Pressure–Composition–Temperature) curve at 593 K for MgH2–10Ni–2LiBH4–2Ti showed that its hydrogen-storage capacity was 5.10 wt%. The inverse dependence of the hydriding rate on temperature is partly due to a decrease in the pressure differential between the applied hydrogen pressure and the equilibrium plateau pressure with the increase in temperature. The rate-controlling step for the dehydriding reaction of the MgH2–10Ni–2LiBH4–2Ti at n = 1 was analyzed.  相似文献   

9.
Mg and Zr-based AB2 hydride composite was prepared by hydriding combustion synthesis (HCS) and the hydriding–dehydriding properties of HCS Mg–(20, 40 wt%)AB2 products were extensively examined. The dehydriding onset temperatures of the HCS Mg–20AB2 and Mg–40AB2 composites were 533 K and 493 K, respectively, which were lower than that of the MgH2. It is suggested that the well-dispersed Zr-based AB2 phase in a Mg composite prepared by HCS plays a crucial role in significantly improving its kinetic properties. Especially, the HCS Mg–20AB2 composite showed fully activated hydrogenation within the 8th cycle and reached a saturated H2 absorption capacity of 5.7 wt.% at 573 K in 10 min. In addition, the hydrogen capacity did not show any significant decrease even after 86 cycles. These results display a potential excellence of HCS processing in preparing Mg-based hydrogen storage materials.  相似文献   

10.
Mg-10wt%Ni-5wt%Fe-5wt%Ti powder was prepared by reactive mechanical grinding using a planetary ball mill. The Mg-10wt%Ni-5wt%Fe-5wt%Ti powder exhibited high hydriding and dehydriding rates even at the first cycle, and its activation was completed after two hydriding–dehydriding cycles. After the reactive mechanical grinding, the particle size of the powder was reduced, as compared with those of the starting materials. The hydrogen storage properties were measured at temperatures of 473 K, 573 K and 623 K. The activated Mg-10wt%Ni-5wt%Fe-5wt%Ti powder absorbed 5.31 wt% and 5.51 wt% of hydrogen for 5 min and 1 h, respectively, at 573 K under 12 bar H2. It desorbed 5.18 wt% of hydrogen at 573 K under 1.0 bar H2 for 1 h. The initial hydrogen absorption rate increased when passing from 473 K to 573 K, but decreased at 623 K. The hydrogen desorption rate increased rapidly with increasing temperature from 473 K to 623 K. The hydrogen storage capacity was about 6.72 wt% at 573 K.  相似文献   

11.
Mg–23.5 wt% Ni and Mg–23.5 wt% Ni–5 wt% Cu alloys for hydrogen storage were prepared by melt spinning and crystallization heat treatment. The alloys were ground by a planetary ball mill for 2 h in order to obtain a fine powder. The activated Mg–23.5Ni and Mg–23.5Ni–5Cu alloys absorbed 4.34 and 4.84 wt% H, respectively, at 573 K under 12 bar H2 for 60 min. The activated Mg–23.5Ni and Mg–23.5Ni–5Cu alloys desorbed 4.27 and 4.81 wt% H, respectively, at 573 K under 1.0 bar H2 for 30 min. The hydriding rates of the alloys are quite high, even at 473 K, while the dehydriding rates of the samples at 473 K are nearly zero.  相似文献   

12.
An Mg-10wt%Ni-5wt%Fe-5wt%Ti sample was prepared by mechanical grinding under H2 (reactive mechanical grinding) using a planetary ball mill. The phases and their weight percentages were analyzed with the Full Proof program from the XRD patterns of the Mg-10Ni-5Fe-5Ti samples after reactive mechanical grinding and after dehydriding at the seventh cycle. The Mg-10Ni-5Fe-5Ti sample after reactive mechanical grinding contained Mg, TiH2, MgH2, and Ni phases, and the sample dehydrided at the seventh cycle contained Mg, TiH2, MgO, Mg2Ni, and Fe phases. The prepared Mg-10Ni-5Fe-5Ti sample had an effective hydrogen-storage capacity larger than 5 wt%H. The activated Mg-10Ni-5Fe-5Ti sample absorbed 5.31 and 5.51 wt%H for 5 and 60 min, respectively, at 573 K under 12 bar H2 and desorbed 1.58, 3.64, and 5.18 wt%H for 10, 30, and 60 min, respectively, at 573 K under 1.0 bar H2. The effects of reactive mechanical grinding, hydriding-dehydriding cycling, and addition of transition elements Ni, Fe, and Ti were discussed.  相似文献   

13.
The oxygen-releasing step of the ZnFe2O4/(ZnO + Fe3O4)-system for solar hydrogen production with two-step water splitting using concentrated solar energy was studied under the air-flow condition by irradiation with concentrated Xe lamp beams from a solar simulator. The spinel-type compound of ZnFe2O4 (Zn-ferrite) releases O2 gas under the air-flow condition at 1800 K and then decomposes into Fe3O4 () and ZnO with a nearly 100% yield (ZnFe2O4 = ZnO + 2/3Fe3O4 + 1/6O2). The ZnO was deposited as the thin layer on the surface of the reaction cell wall. A thermodynamic study showed that the ZnO was produced by the reaction between the O2 gas in the air and the metal Zn vapor generated from ZnFe2O4. With the combined process of the present study on the O2-releasing step and the previous one on the H2 generation step (ZnO + 2/3Fe3O4 + 1/3H2O = ZnFe2O4 + 1/3H2) for the ZnFe2O4/(ZnO + Fe3O4)-system, solar H2 production was demonstrated by one cycle of the ZnFe2O4/(ZnO + Fe3O4)-system, where the O2-releasing step had been carried out in air at 1800 K and the H2 generation step at 1100 K.  相似文献   

14.
Mg-5wt%Ni-2.5wt%Fe-2.5wt%V (named Mg-5Ni-2.5Fe-2.5V) powder was prepared by reactive mechanical grinding using a planetary ball mill. The activation process, the changes in phase and microstructure with hydriding-dehydriding cycling, and the variations in the hydriding and dehydriding rates with temperature were investigated. The rate-controlling step for the dehydriding reaction of Mg-5Ni-2.5Fe-2.5V was analyzed by using a spherical moving boundary model. As the temperature increased from 473 K through 623 K, the initial hydrogen absorption rate under 12 bar H2 decreased, while the hydrogen desorption rate under 1.0 bar H2 increased.  相似文献   

15.
The effect of Ni-substitution on the structure and hydrogen storage properties of Mg2Cu1−xNix (x = 0, 0.2, 0.4, 0.6, 0.8, 1) alloys prepared by a method combining electric resistance melting with isothermal evaporation casting process (IECP) has been studied. The X-ray single-crystal diffraction analysis results showed that the cell volume decreases with increasing Ni concentration, and crystal structure transforms Mg2Cu with face-centered orthorhombic into Ni-containing alloys with hexagonal structure. The Ni-substitution effects on the hydriding reaction indicated that absorption kinetics and hydrogen storage capacity increase in proportion to the concentration of the substitutional Ni. The activated Mg2Cu and Mg2Ni alloys absorbed 2.54 and 3.58 wt% H, respectively, at 573 K under 50 bar H2. After a combined high temperature and pressure activation cycle, the charged samples were composed of MgH2, MgCu2 and Mg2NiH4 while the discharged samples contained ternary alloys of Mg–Cu–Ni system with the helpful effect of rising the desorption plateau pressures compared with binary Mg–Cu and Mg–Ni alloys. With increasing nickel content, the effect of Ni is actually effective in MgH2 and Mg2NiH4 destabilization, leading to a decrease of the desorption temperature of these two phases.  相似文献   

16.
Gold (Au) supported on CeO2–Fe2O3 catalysts prepared by the deposition-coprecipitation technique were investigated for steam reforming of methanol (SRM). The 3 wt% Au/CeO2–Fe2O3 sample calcined at 400 °C achieved 100% methanol conversion and 74% hydrogen yield due to a strong Ce–Fe interaction in the active solid solution phase, CexFe1−xO2. The sintering of Au particles was observed when the highest metal content of 5 wt% was registered, which worsened the SRM activity. According to the TPR and TPO analysis, it was found that the transformation of the α-Fe2O3 structure in the mixed oxides and the coke deposition were the main factors for the rapid deactivation of the catalyst.  相似文献   

17.
Single-walled carbon nanotubes (SWNTs) were mechanically milled with LiBH4/MgH2 mixture, and examined with respect to its effect on the reversible dehydrogenation properties of the Li–Mg–B–H system. Experimental results show that the addition of SWNTs results in an enhanced dehydriding rate and improved cyclic stability of the LiBH4/MgH2 composite. For example, the LiBH4/MgH2 composite with 10 wt% purified SWNTs additive can release nearly 10 wt% hydrogen within 20 min at 450 °C, with an average dehydriding rate over 2 times faster than that of the neat LiBH4/MgH2 sample. Based on the results of phase analysis and a series of designed experiments, the mechanism underlying the observed property improvement was discussed.  相似文献   

18.
Pure hydrogen can be stored and supplied directly to polymer electrolyte fuel cell by the redox of iron oxide: Fe3O4 + 4H2 → 3Fe + 4H2O and 4H2O + 3Fe → Fe3O4 + 4H2. Four bimetal-modified samples were prepared by impregnation. The hydrogen storage properties of the samples were investigated. The result shows that the Fe2O3–Mo–Al sample presented the most excellent catalytic activity and cyclic stability. H2 forming temperature and H2 forming rate could be surprisingly decreased and enhanced, respectively. The average H2 forming temperature at the rate of 250 μmol min−1·Fe-g−1 for Fe2O3–Mo–Al in the first 4 cycles could be decreased from 469 °C before the addition of Mo–Al to 273 °C after the addition of Mo–Al. The reason for it may be that the Mo–Al additive in the sample can prevent from the sintering of the particles and accelerate the H2O decomposition due to Mo taking part in the redox reaction. The average storage capacity of Fe2O3–Mo–Al was up to 4.68 wt%.  相似文献   

19.
A highly selective hydrogen (H2) sensor has been successfully developed by using an yttria-stabilized zirconia (YSZ)-based mixed-potential-type sensor utilizing SnO2 (+30 wt.% YSZ) sensing electrode (SE) with an intermediate Al2O3 barrier layer which was coated with a catalyst layer of Cr2O3. The sensor utilizing SnO2 (+30 wt.% YSZ)-SE was found to be capable of detecting H2 and propene (C3H6) sensitively at 550 °C. In order to enhance the selectivity towards H2, a selective C3H6 oxidation catalyst was employed to minimize unwanted responses caused by interfering gases. Among the examined metal oxides, Cr2O3 facilitated the selective oxidation of C3H6. However, the addition or lamination of Cr2O3 to SnO2 (+30 wt.% YSZ)-SE was found to diminish the sensing responses to all examined gases. Therefore, an intermediate layer of Al2O3 was sandwiched between the SE layer and the catalyst layer to prevent the penetration of Cr2O3 particles into the SE layer. The sensor using SnO2 (+30 wt.% YSZ)-SE coated with a catalyst layer of Cr2O3 as well as an intermediate layer of Al2O3 exhibited a sensitive response toward H2, with only minor responses toward other examined gases at 550 °C under humid conditions (21 vol.% O2 and 1.35 vol.% H2O in N2 balance). A linear relationship was observed between sensitivity and H2 concentration in the range of 20–800 ppm on a logarithmic scale. The results of sensing performance evaluation and polarization curve measurements indicate that the sensing mechanism is based on the mixed-potential model.  相似文献   

20.
Morphological, optical and photocatalytic properties of TiO2, Fe2O3 and TiO2–Fe2O3 samples (formed by 1, 3 and 5 coatings) were studied. The layers were deposited on glass substrate by the sol–gel method. The catalytic activity of the samples was studied by the photodecomposition of methylene blue (MB) under visible light illumination. The FTIR results indicate that all samples present surface OH radicals that are bound either to the Ti or Fe atoms. This effect is better visualized at larger number of coatings in the TiO2–Fe2O3/glass systems. Also, two mechanisms are observed during the photodecomposition of the MB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号