首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以聚酰胺羧酸为膜材料,考察了制膜条件,化学改性膜亲水性及水-乙醇分离性能的影响,针对戊酸与乙醇的酯化反应,测定了改性膜对多元反应体系的分离性能,并初步分析了膜分离过程对酯化反应的影响。  相似文献   

2.
渗透蒸发膜及其在酯化反应过程中的应用   总被引:4,自引:0,他引:4  
许中强  陈庆龄 《化工进展》1996,(5):41-44,53
根据30余篇文献及有关的技术资料,从膜的结构,膜制备的材料,制备方法及表征等方面总结了近10年来渗透蒸发膜国内外的研究情况,以及将渗透蒸发膜应用酯化反应体系的研究成果和动态。  相似文献   

3.
考察了PVA-Zr(Ⅳ)膜催化乙酸和丁醇酯化反应的宏观反应动力学,认为膜催化酯化反应为扩散-反应联合控制,膜溶胀实验表明反应液各组分浓度不同于膜中各组分平均浓度.假设膜催化反应分为:膜溶胀前及溶胀后两个阶段,分别求出了此两个阶段反应动力学常数.比较了PVA-Zr(Ⅳ)催化膜和无催化活性层的PVA膜渗透性能.  相似文献   

4.
离子膜在松节油合成樟脑行业中的应用   总被引:1,自引:0,他引:1  
介绍聚乙烯一苯乙烯阳离子交换树脂(简称离子膜)在松节油合成樟脑酯化反应中的应用。离子膜起催化作用的酯化反应,具有酯转化率高、反应时间短、操作工序简化、废水排放少等优点。  相似文献   

5.
采用超声振荡法,通过聚乙烯醇(PVA)与硫酸进行酯化反应制备了聚阴离子膜材料。用正交实验法讨论了最佳合成工艺条件,测定了酯化反应的取代度,并通过红外光谱对材料的化学结构进行了表征。  相似文献   

6.
1引言交联聚乙烯醇(PVA)膜用于酯化反应脱水,膜性能随时间发生变化,膜表面红外光谱显示聚乙烯醇上部分OH被酸酯化了[1]。解决这个问题最好的办法是设计一种膜,既具有催化活性又具有分离功能,反应和分离合二为一。对某物系有催化活性的基团通过化学接枝,...  相似文献   

7.
<正>本发明公开了一种采用ZSM-5型分子筛膜制备乙酸异戊酯的方法,该方法采用高性能的ZSM-5型分子筛膜应用于乙酸和异戊醇的酸催化反应过程,通过酯化反应-膜分离耦合技术在线脱除酯化反应产生的水。本发明采用硫酸氢钠为催化剂,通过渗透汽化技术将酯化反应与膜分离过程耦合,高性能ZSM-5型分子筛膜在线脱除乙酸和异戊醇酯化  相似文献   

8.
《应用化工》2022,(8):1641-1644
制备了磺化聚醚砜SPES膜和3种磺化度的SPES/PES共混膜用于催化酯化酸化油制备生物柴油。考察了磺化度、催化膜用量、酸化油和甲醇质量比、反应时间对酯化反应的影响。结果表明,单独使用SPES催化膜较脆,而SPES/PES共混膜机械强度较好,其中磺化度20.3%SPES/PES膜的重复使用性能最好。SPES/PES共混膜催化酯化酸化油制备生物柴油的最佳反应条件为:磺化度20.3%的SPES/PES共混膜为催化剂,催化膜用量1.66%,醇油质量比为1∶1,反应温度65℃,反应时间6 h,此时酸化油转化率为97.44%。  相似文献   

9.
交联聚乙烯醇渗透蒸发膜用于酯化反应过程   总被引:8,自引:1,他引:8  
研究了交联聚乙烯渗透蒸发膜在酯化反应过程中的应用,以乙酸与正丁醇酯化反应为实验对象,通过渗透蒸发膜选择性地移走产物水,使最终反尖转化率超越平衡转化率,实验考察了温度,进料初始摩尔比,催化剂浓度对过程的影响。  相似文献   

10.
分子筛膜是近些年发展起来的一种新型无机膜,具有很好的筛分效应、极高的耐热稳定性及良好的催化作用等优异性能。本文简单介绍了分子筛膜制备技术和分子筛膜反应器种类,分析了近年来分子筛膜在脱氢反应、酯化反应和氧化反应催化反应中的初步应用,发现其可实现催化与分离的很好结合,并对分子筛膜的应用前景进行了展望。  相似文献   

11.
闫鹏  程易 《化工进展》2022,41(7):3446-3454
采用反应-分离集成的膜反应器进行分布式制氢,对简化工艺、降低能耗、提升技术经济性至关重要。本文采用数学模型对甲烷蒸汽重整制氢过程膜反应器进行模拟,系统分析了渗透侧操作策略、反应压力、反应温度、钯基膜性能、催化剂性能对反应器行为的影响;并以1m3/h甲烷最大程度转化为目标进行分布式制氢案例分析,详细比较膜反应器技术与“常规反应器+膜分离”工艺技术。结果表明,膜反应器在反应压力30atm(1atm=101325Pa)、反应温度500℃下操作可实现紧凑设计,比“常规反应器+膜分离”工艺技术具有明显优势,但是亟需研发更佳活性(10倍)的钯基膜和催化剂以实现显著的过程强化。模拟结果可为不同规模分布式制氢膜反应器的操作与设计及进一步的性能强化提供指导。  相似文献   

12.
膜化学反应器及其应用进展   总被引:2,自引:1,他引:2  
贾志谦  刘忠洲 《化工进展》2002,21(8):548-551
提出将膜化学反应器分为四 :膜反应分离器、膜混合反应器、膜混合反应分离器和膜介观孔道反应器,并分别对各类反应器的特征、功能及其应用进行了评述。  相似文献   

13.
A mathematical model of a membrane reactor used for methane steam reforming was developed to simulate and compare the maximum yields and operating conditions in the reactor with that in a conventional fixed bed reactor. Results show that the membrane reactor resents higher methane conversion yield and can be operated under milder conditions than the fixed bed reactor, and that membrane thickness is the most important construction parameter for membrane reactor success. Control of the H2:CO ratio is possible in the membrane reactor making this technology more suitable for production of syngas to be used in gas-to-liquid processes (GTL).  相似文献   

14.
Methane steam reforming in a Pd-Ru membrane reactor   总被引:2,自引:0,他引:2  
Methane steam reforming has been carried out in a Pd-Ru membrane reactor at 500–600 ‡C. The membrane reactor consisted of a Pd-6%Ru tube of 100 mm wall thickness and commercial catalysts packed outside of the membrane. The methane conversion was significantly enhanced in the membrane reactor in which reaction equilibrium was shifted by selective permeation of hydrogen through the membrane. The methane conversion at 500 ‡C was improved as high as 80% in the membrane reactor, while equilibrium conversion in a fixed-bed reactor was 57%. The effect of gas flow rate and temperature on the performance of the membrane reactor was investigated and the results were compared with the simulated result from the model. The model prediction is in good agreement with the experimental result. In order to apply the membrane in practice, however, the thickness of the membrane has to be reduced. Therefore, the effect of membrane thickness on performance of the membrane reactor was estimated using the model.  相似文献   

15.
Coupling reaction and separation in a membrane reactor improves the reactor efficiency and reduces purification cost in the next stages. In this work a novel reactor consisting two membrane layers has been proposed for simultaneous hydrogen permeation to reaction zone and water vapor removal from reaction zone in the methanol synthesis reactor. In this configuration conventional methanol reactor is supported by a Pd/Ag membrane layer for hydrogen permeation and alumina-silica composite membrane layer for water vapor removal from reaction zone. In this reactor syngas is fed to the reaction zone that is surrounded with hydrogen-permselective membrane tube. The water vapor-permselective membrane tube is placed in the reaction zone. A steady state heterogeneous one-dimensional mathematical model is developed for simulation of the proposed reactor. To verify the accuracy of the model, simulation results of the conventional reactor is compared with the available plant data. The membrane fixed bed reactor benefits are higher methanol production rate, higher quality of outlet product and consequently lower cost in product purification stage. This configuration has enhanced the methanol yield by 10.02% compared with industrial reactor. Experimental proof-of-concept is needed to establish the safe operation of the proposed configuration.  相似文献   

16.
A hollow fiber membrane reactor, which resembles a tube-and-shell heat exchanger, was developed for homogeneous catalytic reactions with gas reactants and products. The gas stream flows through the tube side while the reaction takes place in the catalyst solution which fills the shell side. The separation load of product from the catalyst solution can be reduced by using a hollow fiber membrane reactor instead of a conventional bubble column reactor. The reactor operates in a plug-flow pattern with a large mass transfer area per unit volume of catalyst solution

This concept was investigated experimentally using the direct oxidation of ethylene to acetaldehyde reaction in an aqueous solution of palladium (H) chloride-cupric chloride with a silicone rubber membrane reactor and a polypropylene membrane reactor. It was experimentally demonstrated that membrane reactors could achieve higher production rates per unit volume of catalyst than the conventional sparged reactor. The experimental data were in good agreement with the predictions by the mathematical model. The conditions under which the membrane reactor will be more advantageous than the conventional sparged reactors can be readily ascertained with the analytical solution of the simplified membrane reactor model.  相似文献   

17.
In this study, a dynamic model for a membrane dual‐type methanol reactor was developed in the presence of long term catalyst deactivation. The proposed model is used to compare the performance of a membrane dual‐type methanol reactor with a conventional dual‐type methanol reactor. A conventional dual‐type methanol reactor is a shell and tube heat exchanger reactor in which the first reactor is cooled with cooling water and the second one is cooled with synthesis gas. In a membrane dual‐type reactor, the wall of the tubes in the gas‐cooled conventional reactor is covered with a palladium‐silver membrane, which is only permeable to hydrogen. Hydrogen can penetrate from the feed synthesis gas side into the reaction side due to the hydrogen partial pressure driving force. Hydrogen permeation through the membrane shifts the reaction towards the product side according to the thermodynamic equilibrium. The proposed dynamic model was validated against measured daily process data of a methanol plant recorded for a period of four years and a good agreement was achieved. The simulation results show that there is a favorable profile of temperature and activity of the membrane dual‐type reactor relative to single and conventional dual‐type reactor systems. Therefore, the performance of methanol reactor systems improves when a membrane is used in a conventional dual‐type methanol reactor.  相似文献   

18.
In this work, a dynamic model for a cascade fluidized-bed hydrogen permselective membrane methanol reactor (CFBMMR) has been developed in the presence of long-term catalyst deactivation. In the first catalyst bed, the synthesis gas is partly converted to methanol in a water-cooled reactor, which is a fluidized-bed. In the second bed, which is a membrane assisted fluidized-bed reactor, the reaction heat is used to preheat the feed gas to the first bed. This reactor configuration solves some observed drawbacks of new conventional dual type methanol reactor (CDMR) and even fluidized-bed membrane dual type methanol reactor (FBMDMR) such as pressure drop, internal mass transfer limitations, radial gradient of concentration and temperature in both reactors. A dynamic two-phase theory in bubbling regime of fluidization is used to model and simulate the proposed reactor. The proposed model has been used to compare the performance of a cascade fluidized-bed membrane methanol reactor with fluidized-bed membrane dual-type methanol reactor and conventional dual-type methanol reactor. The simulation results show a considerable enhancement in the methanol production due to the favorable profile of temperature and activity along the CFBMMR relative to FBMDMR and CDMR systems.  相似文献   

19.
/ 《Catalysis Today》2005,104(2-4):238-243
Isobutane dehydrogenation to isobutene has been investigated experimentally and by modelling for a membrane reactor and a fixed bed reactor under similar operating conditions using a Pt/alumina catalyst. Reaction kinetics were obtained from experiments in the fixed bed reactor. Comparative tests showed that the membrane reactor achieved much higher yields of isobutene and also gave higher selectivities, with less by-products than the fixed bed system.

Using the kinetic data, the simulations gave good agreement with the fixed bed experiments, but over predicted the yields from the membrane reactor. Analysis of these results indicated that in the membrane reactor the hydrogen permeability of the membrane was much greater than its hydrogen transfer requirement and that the reaction rate was the determining factor for isobutene yield.  相似文献   


20.
The Cu/SiO2/ceramic composite membrane was prepared on the SiO2/ceramic mesoporous membrane by an ion exchange method, and vapor phase dehydrogenation of methanol to methyl formate in the catalytic membrane reactor was investigated. It showed much better performance in the catalytic membrane reactor than that in the fixed-bed reactor under the same reaction conditions. At 240 °C, 57.3% conversion of methanol and 50.0% yield of methyl formate were achieved in the catalytic membrane reactor and only 43.1% conversion of methanol and 36.9% yield of methyl formate were achieved in the fixed-bed reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号