首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The nutritional and endocrine factors affecting protein translation in the bovine mammary gland, and the molecular mechanisms mediating their effects, are not well understood. The objective of this study was to assess the role of the mammalian target of rapamycin (mTOR) signaling pathway in the regulation of mammary protein synthesis by nutrients and hormones. Mammary epithelial acini isolated from lactating dairy cows were treated in medium containing, alone or in combination, a mixture of AA or glucose and acetate (GA) as energy substrates, or a combination of the lactogenic hormones hydrocortisone, insulin, and prolactin (HIP). Changes in the rate of mammary protein synthesis and the phosphorylation state of components of the mTOR signaling pathway were measured. Mammary protein synthesis was 50% higher with increased availability of AA in medium. The presence of GA or treatment of mammary acini with HIP alone did not affect mammary protein synthesis. The stimulation of mammary protein synthesis by AA was enhanced by HIP treatment, but not by the presence of GA in medium. Treatment of mammary acini with HIP induced the phosphorylation of protein kinase B. This effect was augmented in the presence of either AA or GA in medium. The stimulation of mammary protein synthesis by AA and its enhancement by HIP were associated with increased phosphorylation of the mTOR substrates, p70 ribosomal protein S6 kinase-1, and eukaryotic initiation factor 4E (eIF4E)-binding protein-1 (4E-BP1), and dissociation of 4E-BP1 from eIF4E. The results suggest that nutrients and hormones may modulate mammary protein synthesis through the mTOR signaling pathway.  相似文献   

2.
3.
The objective of this study was to determine effects of glucose on milk protein yield and mammary mammalian target of rapamycin (mTOR) activity in dairy cattle in early lactation. Eight multiparous cows at 73 ± 8 d in milk were randomly assigned to 2 treatments in a crossover design for two 6-d periods. Treatments were jugular infusion of either saline (Sal) or 896 g/d glucose (Glc). All cows were fed a total mixed ration with 42% neutral detergent fiber, had free access to water, and were milked twice a day. Within each period, blood samples were taken (d 5) and mammary tissue was collected by biopsy (d 6) from each hindquarter for Western blot analysis. In addition to Sal and Glc treatments, on d 6, rapamycin dissolved in 50% dimethyl sulfoxide was administered via the teat canals into the left quarters, with a control solution administered into the right quarters. Rapamycin had no effect on milk protein yields or phosphorylation state of mTOR signaling proteins. Infusions of Glc significantly increased milk yield but only tended to increase milk protein yields. Milk fat tended to be decreased in cows infused with Glc, whereas lactose yields were significantly increased. Glucose infusion did not increase plasma glucose levels, but insulin and nonessential AA concentrations increased by 21 and 16%, respectively, branched-chain AA concentrations decreased 24%, and essential AA concentrations tended to decrease by 14%. Infusion of Glc significantly decreased abundances of both phosphorylated and total ribosomal S6 kinase 1 (S6K1) in mammary tissue by 27 and 11%, respectively. Abundance of phosphorylated eukaryotic initiation factor 4E-binding protein 1 (4EBP1) decreased significantly by 25%, whereas total 4EBP1 exhibited a tendency to decrease by 16%. We conclude that the mTOR signaling pathway is not the only regulator of milk protein synthesis. Decreases in essential AA concentrations in plasma suggest that protein synthesis was stimulated in nonmammary tissues of the body, presumably skeletal muscle.  相似文献   

4.
An arteriovenous technique, combined with a 30-h i.v. infusion of [5-(13)CH3]Met and [5,5,5-(2)H]Leu, was used to monitor mammary uptake of free amino acid (AA) and to estimate the proportion of casein synthesized from circulating peptides in goats in early and late lactation. At both stages, kinetics was performed on the last day of consecutive 5.5-d periods. The first period was an i.v. infusion of saline and the second an i.v. infusion of lysine (8.9 g/h) plus methionine (2 g/h). Net uptake of essential AA and protein yields were higher in early than in late lactation. Uptake of free Met, His, and Pro was less than, uptake of Tyr and Lys was equal to, and uptake of Arg, Leu, Val, and Ile was greater than milk protein synthesis. Peptide uptake, estimated from the difference in casein and plasma free AA enrichment, accounted for a larger fraction of casein-Met (17 vs. 8%) and casein-Leu (27 vs. 12%) in late than in early lactation. Small decreases in mammary blood flow, AA transport activity, and AA concentrations accounted for the lower uptake of AA in late compared with early lactation. Based on our studies of several AA, the utilization of circulating peptides for casein synthesis appears to be a general phenomenon.  相似文献   

5.
6.
Specific AA affect rates of milk protein synthesis in the mammary glands of lactating cows. The objective of this study was to quantify the rate of αS1-casein synthesis in response to Ile, Leu, Met, and Thr supplementation, and to test the single-limiting AA theory for milk protein synthesis by exploring interactions among these AA. Effects of Ile, Leu, Met, and Thr were studied in vitro with a composite design containing a central point repeated 4 times, with 2 axial points per AA and a complete 24 factorial. Other AA were at the concentration in Dulbecco's modified Eagle medium/F12 medium (DMEM). The experiment was replicated with mammary tissue from 5 lactating cows. Mammary tissue slices (0.12 ± 0.02 g) were incubated for 4 h at 37°C in 5 mL of treatment medium containing 2H5-Phe. Caseins were precipitated from cell homogenate supernatants. Enrichment with 2H5-Phe of the N[34]LLRFFVAPFPE αS1 peptide was determined by matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF-TOF), which was used to determine enrichment of Phe in the transfer (t)RNA pool and αS1-casein fractional synthesis rates (CFSR). Data were analyzed with a polynomial mixed model containing linear, quadratic, and 2-factor interactions for Ile, Leu, Met, and Thr, and cow and residual as random factors. Interactions were not significant at P < 0.1 and were removed from the model. Increasing concentrations of Ile, Leu, Met, and Thr simultaneously increased CFSR curvilinearly with a predicted maximum response of 4.32 ± 0.84%/h at 63% of DMEM concentrations. The maximum response to each of the 4 AA was at 71, 49, 60, and 32% of the concentration in DMEM, for Ile, Leu, Met, and Thr, respectively. These values correspond to 270, 120, 440, and 140% the plasma concentrations of Ile, Leu, Met, and Thr observed in lactating cows fed to meet National Research Council requirements, respectively. The CFSR estimated at those maxima were similar among AA (3.6 ± 0.6%/h). Individual AA effects on CFSR did not correlate with mammalian target of rapamycin (mTOR) signaling. Independent responses of CFSR to individual essential AA observed in this study contradict the single-limiting AA theory assumed in current requirement systems. The saturable responses in CFSR to these 4 AA also highlight the inadequacy of using a fixed postabsorptive AA efficiency approach for determining AA requirements for milk protein synthesis.  相似文献   

7.
Acetate is a short-chain fatty acid (SFA) that is the major substrate for de novo fatty acid synthesis. The mammalian target of rapamycin/eukaryotic initiation factor 4E (mTOR/eIF4E) signaling pathway is involved in fat synthesis. However, the effect and mechanism of acetate on fatty acid synthesis by the mTOR/eIF4E signaling pathway is unclear in bovine mammary epithelial cells (BMECs). The objectives of this study were to investigate the effect of acetate on cell viability, triacylglycerol (TG), and mRNA expression of the genes related to lipid synthesis. The mechanism of acetate regulation milk fat synthesis through the mTOR/eIF4E signaling pathway was assessed by blocking the mTOR signaling pathway and silencing eIF4E in BMECs. Third-passage BMECs were allocated to 6 treatments including 0, 4, 6, 8, 10, and 12 mM acetate to evaluate the effect of acetate on lipid synthesis; the optimum concentration in the first study was selected for the subsequent study. Subsequently, cells were randomly allocated to 4 treatments, 1 control group and 3 treated groups, consisting of acetate (6 mM), rapamycin (100 nM), and acetate + rapamycin to test the role of mTOR signaling pathway response to acetate in milk lipid synthesis. Finally, eIF4E was silenced by small interfering RNA (siRNA) to detect the role of eIF4E in milk lipid synthesis. Treatments included control, eIF4E siRNA, acetate (6 mM), and acetate+ eIF4E siRNA. Results showed that acetate increased TG accumulation and the relative expression of fatty acid synthase (FASN), acetyl-coenzyme A carboxylase α (ACACA), fatty acid-binding protein 3 (FABP3), sterol regulatory element binding protein 1 (SREBP1), peroxisome proliferator-activated receptor gamma (PPARG), mTOR, eIF4E, P70 ribosomal protein S6 kinase-1 (S6K1), and 4E-binding protein-1 (4EBP1) in a dose-dependent manner. Rapamycin effectively inhibited the positive effect of acetate on the relative expression of mTOR, eIF4E, S6K1, 4EBP1, FASN, ACACA, FABP3, stearoyl-CoA desaturase (SCD1), SREBP1, and PPARG. The upregulation of acetate on the relative expressions of FASN, ACACA, SCD1, and SREBP1 was suppressed when eIF4E was knocked down. It suggested that acetate regulated milk fat synthesis through mTOR/eIF4E signaling pathway in BMECs.  相似文献   

8.
Improved representation of postabsorptive N metabolism in lactating dairy cows requires a better understanding of protein synthesis regulation in the mammary glands. This study aimed to determine the quantitative effects of Ile, Leu, Met, and Thr on the phosphorylation state of signaling proteins that regulate protein synthesis. The experiment used a composite design with a central point, 2 axial points per AA, and a complete 24 factorial. All of the other AA were provided at the concentrations in Dulbecco's modified Eagle's medium. The experiment was replicated with tissues from 5 lactating cows. Mammary tissue slices (0.12 ± 0.02 g) were incubated for 4 h. Total and site-specific phosphorylated mammalian target of rapamycin (mTOR; Ser2448), eukaryotic elongation factor (eEF) 2 (Thr56), ribosomal protein S6 (Ser235/236), and eukaryotic initiation factor 2α (Ser51) were determined by western immunoblotting. Tissue concentrations of the 4 AA studied responded linearly to media supply. Addition of Ile, Leu, Met, or Thr had no effect on eukaryotic initiation factor 2α phosphorylation. Isoleucine and Thr positively affected mTOR phosphorylation. However, the 2 AA had an antagonistic relationship. Similarly, Ile linearly increased ribosomal protein S6 phosphorylation, and Thr inhibited the Ile effect. In addition, eEF2 phosphorylation was linearly decreased by Ile and Leu. Threonine curvilinearly decreased eEF2 phosphorylation, Ile and Leu negatively interacted on eEF2, and Thr tended to inhibit Leu effects on eEF2. This work demonstrated saturable responses and interactions between AA on activation of the mTOR pathway. Incorporation of these concepts into milk protein response models will help to improve milk and milk protein yield predictions and increase postabsorptive N efficiency and reduce N excretion by dairy cows.  相似文献   

9.
10.
11.
The synthesis of protein requires the availability of specific AA and a large supply of energy in bovine mammary epithelial cells (BMEC). Whether an interaction exists between Lys/Met ratio and glucose level on milk protein synthesis and its potential regulatory mechanism is unclear. We investigated the effects of different Lys/Met ratios and glucose levels on casein synthesis-related gene expression in BMEC to elucidate the underlying molecular mechanisms. Primary BMEC were subjected to 4 treatments for 36 h, arranged in a 2 × 2 factorial design with Lys/Met ratios of 3:1 (1.2:0.4 mM, LM3.0; total AA = 8.24 mM) and 2.3:1 (1.4:0.6 mM, LM2.3; total AA = 8.64 mM) and glucose levels of 17.5 mM (high glucose level) and 2.5 mM (low glucose level). No interactions between Lys/Met ratio and glucose level on cell viability, cell cycle progression, mRNA, or protein expression levels were found. High glucose level increased cell proliferation and promoted cell cycle transition from intermediate phase (G1 phase) to synthesis (S phase) by approximately 50%, whereas Lys/Met ratio had no effect. Both mRNA and protein abundance of αS1-casein and β-casein were positively affected by LM3.0, whereas a high glucose level increased protein abundance of αS1-casein and β-casein and increased gene expression of CSN1S1 but not of CSN2. Furthermore, high glucose increased the mRNA abundance of ELF5 and decreased that of GLUT8, enhanced protein expression of total and phosphorylated mechanistic target of rapamycin (mTOR), and decreased phosphorylated AMP-activated protein kinase (AMPK) levels. Treatment LM3.0 had a stimulatory effect on total and phosphorylated mTOR but did not affect AMPK phosphorylation. The mRNA levels of JAK2, ELF5, and RPS6KB1 were upregulated and mRNA levels of EIF4EBP1 were downregulated with LM3.0 compared with LM2.3. Our results indicate that casein synthesis was regulated by Lys/Met ratio via JAK2/ELF5, mTOR, and its downstream RPS6KB1 and EIF4EBP1 signaling. In contrast, glucose regulated casein synthesis through promoting cell proliferation, accelerating cell cycle progression, and activating the ELF5 and AMPK/mTOR signaling pathways. Within the range of substrate levels in the present study, a change in Lys/Met ratio had a stronger effect on abundance of αS1-casein and β-casein than a change in glucose level.  相似文献   

12.
13.
《Journal of dairy science》2022,105(9):7354-7372
This study investigated mammary gland metabolism and whole-body (WB) rate of appearance (Ra) of glucose in dairy cattle in response to a constant supplemental level of metabolizable protein (MP) composed of different essential AA (EAA) profiles. Five multiparous rumen-fistulated Holstein-Friesian dairy cows (2.8 ± 0.4 lactations; 81 ± 11 d in milk; mean ± standard deviation) were abomasally infused according to a 5 × 5 Latin square design with saline (SAL) or 562 g/d of EAA delivered in different profiles where individual AA content corresponded to their relative content in casein. The profiles consisted of (1) a complete EAA mixture (EAAC), (2) Ile, Leu, and Val (ILV), (3) His, Ile, Leu, Met, Phe, Trp, Val (GR1+ILV), and (4) Arg, His, Lys, Met, Phe, Thr, Trp (GR1+ALT). A total mixed ration (58% corn silage, 16% alfalfa hay, and 26% concentrate on a dry matter basis) was formulated to meet 100 and 83% of net energy and MP requirements, respectively, and was fed at 90% of ad libitum intake on an individual cow basis. Each experimental period consisted of 5 d of continuous abomasal infusion followed by 2 d of no infusion. Arterial and venous blood samples were collected on d 4 of each period for determination of mammary gland AA and glucose metabolism. On d 5 of each period, D-[U-13C]glucose (13 mmol priming dose; continuous 3.5 mmol/h for 520 min) was infused into a jugular vein and arterial blood samples were collected before and during infusion to determine WB Ra of glucose. Milk protein yield did not differ between EAAC, GR1+ILV, and GR1+ALT, or between SAL and ILV, and increased over SAL and ILV with EAAC and GR1+ILV. Mammary plasma flow increased with ILV infusion compared with EAAC and GR1+ILV. Infusion of EAAC tended to increase mammary gland net uptake of total EAA and decreased the mammary uptake to milk protein output ratio (U:O) of non-EAA compared with SAL. Infusion of ILV increased mammary net uptake and U:O of Ile, Leu, and Val markedly over all treatments. The U:O of total Ile, Leu, and Val increased numerically (25%) with GR1+ILV infusion compared with EAAC, and the U:O of total Arg, Lys, and Thr tended to decrease, primarily from decreased U:O of Lys. During GR1+ALT infusion, U:O of total Arg, Lys, and Thr was greater than that during EAAC infusion, whereas U:O of Ile, Leu, and Val did not differ from EAAC. Glucose WB Ra increased 16% with GR1+ALT over SAL, and increased numerically 8 and 12% over SAL with EAAC and GR1+ILV, respectively. The average proportion of lactose yield relative to glucose WB Ra did not differ across treatments and averaged 0.53. On average, 28% of milk galactose arose from nonglucose precursors, regardless of treatment. In conclusion, intramammary catabolism of group 2 AA increased to support milk component synthesis when the EAA profile of MP was incomplete with respect to casein. Further, WB and mammary gland glucose metabolism was flexible in support of milk component synthesis, regardless of absorptive EAA profile.  相似文献   

14.
《Journal of dairy science》2019,102(9):7760-7764
Milk protein concentrates are common ingredients in the dairy industry, with varying processing histories and composition. The objective of this research was to determine the feasibility of using the whey protein nitrogen (WPN) index, a well-established index for skim milk powder and nonfat dry milk, as a quality parameter for milk protein concentrates. The WPN index is a value based on the moisture-adjusted weight of skim milk powder. We hypothesized that WPN, even when standardized based on protein, may change depending on solubilization conditions of milk protein concentrates because of differences in solubilization conditions or processing history. The WPN was measured for model concentrates with different thermal history or reconstitution conditions. The WPN was not affected by an increased concentration of soluble casein in the dispersions nor after solubilization of the powder at 22 or 60°C. All reconstituted samples were standardized for protein. The WPN was also in full accordance with residual native protein measured by chromatography.  相似文献   

15.
In addition to lysine and methionine, current ration-balancing programs suggest that branched-chain amino acid (BCAA) supply may also be limiting in dairy cows. The objective of this study was to investigate whether BCAA, leucine, isoleucine, and valine become limiting for milk protein synthesis when methionine and lysine supply were not limiting. Nine multiparous Holstein cows with an average milk production of 53.5 ± 7.1 kg/d were randomly assigned to 7-d continuous jugular infusions of saline (CTL), methionine and lysine (ML; 12 g and 21 g/d, respectively), or ML plus leucine, isoleucine, and valine (ML+BCAA; 35 g, 15 g, and 15 g/d, respectively) in a 3 × 3 Latin square design with 3 infusion periods separated by 7-d noninfusion periods. The basal diet consisted of 40% corn silage, 14% alfalfa hay, and a concentrate mix, and respectively supplied lysine, methionine, isoleucine, leucine, and valine as 6.1, 1.8, 4.7, 8.9, and 5.3% of metabolizable protein. Dry matter intake (23.9 kg/d), milk yield (52.8 kg/d), fat content (2.55%), fat yield (1.33 kg/d), lactose content (4.77%), lactose yield (2.51 kg/d), and milk protein efficiency (0.38) were similar across treatments. Protein yield and protein content were not significantly different between ML (1.52 kg/d and 2.88%, respectively) and ML+BCAA (1.51 kg/d and 2.83%, respectively), but they were significantly greater than that of CTL (1.39 kg/d and 2.71%). Cows that received ML+BCAA had less milk urea nitrogen content (10.9 mg/dL) compared with milk of CTL cows (12.4 mg/dL) and ML cows (11.8 mg/dL). Whereas high-producing cows responded positively to methionine and lysine supplementation, no apparent benefits of BCAA supplementation in milk protein synthesis were found. Infusion of BCAA may have stimulated synthesis of other body proteins, probably muscle proteins, as evidenced by decreased milk urea nitrogen.  相似文献   

16.
《Journal of dairy science》2021,104(10):11291-11305
Postnatal metabolism depends on maturation of key metabolic pathways around birth. In this regard, endogenous glucose production is impaired in calves born preterm. Concerning protein metabolism, the rates of protein turnover are greater during the neonatal period than at any other period of postnatal life. The mammalian target of rapamycin (mTOR) and the ubiquitin-proteasome system (UPS) are considered as the major regulators of cellular protein turnover. The objectives of this study were to investigate (1) the changes in plasma AA profiles, (2) the mRNA abundance of mTOR signaling and UPS-related genes in skeletal muscle, and (3) the mRNA abundance of branched-chain AA (BCAA) catabolic enzymes in skeletal muscle and adipose tissue in neonatal calves with different degree of maturation during the transition to extrauterine life. Calves (n = 7/treatment) were born either preterm (PT; delivered by cesarean section 9 d before term) or at term (T; spontaneous vaginal delivery) and were left unfed for 1 d. Calves in treatment TC were also spontaneously born but were fed colostrum and transition milk for 4 d. Blood samples were collected from all calves at birth and at 24 h of life. Additional blood samples were taken 2 h after feeding (26 h of life) for PT and T calves, and on d 4 of life for TC, to determine plasma glucose, urea, and AA. Tissue samples from 3 muscles [M. longissimus dorsi (MLD), M. semitendinosus (MST), and M. masseter (MM)], and kidney fat were collected following euthanasia at 26 h after birth (PT, T) or on d 4 of life (TC) at 2 h after feeding. The concentrations of the majority of plasma AA (Ala, Gln, Asn, Cit, Lys, Orn, Thr, and Tyr), nonessential AA, and total AA were greater during the first 24 h and also before and 2 h after feeding in PT than in T. The ratio of plasma BCAA to the aromatic AA (Tyr and Phe) was greatest in TC, followed by T, and least in PT. The mRNA abundance of mTOR and ribosomal protein S6 kinase 1 (S6K1) in MLD and MM was greater in PT and T than in TC. The mRNA abundance of muscle-specific ligases FBXO32 (F-box only protein 32) in the 3 different skeletal muscles and TRIM63 (tripartite motif containing 63) in MLD was greater in PT and T than in TC; in MM, TRIM63 mRNA was greatest in PT. The mRNA for BCKDHA and BCKDHB (the α and β polypeptide of branched-chain α-keto acid dehydrogenase) in kidney fat was elevated in PT and T compared with TC, suggesting a possible enhancement of BCAA oxidation as energy source to cover the energetic and nutritional postnatal demands in PT and T in a starved state. The increased abundances of mTOR-associated signaling factors and muscle-specific ligase mRNA indicate a greater rate of protein turnover in muscles of PT and T in a starved state. Elevated plasma concentrations of several AA may result from enhanced muscle proteolysis and impaired conversion to glucose in the liver of PT calves.  相似文献   

17.
Changing the composition of milk protein and of milk fatty acids alters nutritional and physical properties of dairy products and their consumer appeal. Genetic selection for milk yield decreases concentrations of milk protein and of milk fat. Little is known, however, about how the decrease affects composition of milk protein and milk fatty acids. The objective of this study was to quantify changes in composition of milk protein and of milk fatty acids in cows differing in genetic merit for milk production. Three measures of genetic merit for milk production were used for each cow: genetic line, parent average predicted transmitting ability (PTA) for milk, and cow milk PTA. Composition of milk protein and milk fatty acids were compared in 448 milk samples from 178 cows representing 2 divergent lines of Holsteins that were bred for high or average PTA for milk and combined milk protein and fat yield. High-line cows (n = 97) produced more milk that contained less fat and had higher proportions of αS1-casein in milk protein than did average-line cows (n = 81). We additionally obtained from 233 cows (178 cows representing the 2 genetic lines and 55 cows with ancestors from both genetic lines) the parent average milk PTA and cow milk PTA and compared composition of milk protein and of milk fatty acids in 592 milk samples. Cows whose parent average milk PTA was above or equal to the median of the 233 cows produced more milk that contained less protein and less fat and that tended to have greater proportions of αS1-casein in milk protein than cows whose average milk PTA was below the median. Similarly, cows with above or equal median milk PTA of the 233 cows produced more milk that contained less protein and less fat and had greater proportions of αS1- casein in milk protein than did cows with below-median milk PTA. Milk fatty acid composition was not consistently different between groups. Therefore, selection for milk yield decreased concentrations of milk protein and milk fat but had little effect on composition of milk protein and milk fatty acids.  相似文献   

18.
Serotonin receptors (5-HTR) are present in the mammary tissue of mouse, humans, cows, and rats. In these species, serotonin is important for the mammary gland function and lactation performance. The mammary gland expression of 5-HTR in small dairy ruminants has yet to be described. In the present study, primer sequences were developed to amplify 5-HTR (1A, 1D, 1E,1B, 1F, 2A, 2B, 2C, 3a, 4, 5a, 6, and 7) using real-time quantitative PCR for the detection of mRNA expression in mammary tissue of dairy sheep, goats, and cows. The distribution of commonly expressed 5-HTR between the 3 species (1B, 1E, 2A, 2B, 4, and 7) was analyzed in the mammary tissue of late-lactation and dried-off sheep, goats, and cows using immunohistochemical staining. Real-time quantitative PCR analysis showed that the 3 studied species expressed receptors 5-HTR1B, 1E, 2A, 2B, 4, and 7. Goats and sheep expressed 5-HTR1D and 5a; 5-HTR1A and 1F were expressed only in sheep. The mammary epithelial cells were positively stained for all the studied receptors by immunohistochemistry (5-HTR1B, 1E, 2A, 2B, 4, and 7). The endothelial cells of blood vessels were positively stained for 5-HTR1B, 2A, 2B, and 7 in all the species. Additionally, 5-HTR1E was present in cow endothelium. The myoepithelial cells stained positively for 5-HTR1E in all the species, and 5-HTR4 myoepithelial staining was present only in cows and sheep. Between the lactating and dried-off mammary glands, the location of 5-HTR in the epithelial cells changed from a cytoplasmic reaction in lactating udders to a reaction in the apical region in dry udders. These results showed that the distribution of 5-HTR subtypes in the mammary gland of dairy ruminants vary among species, tissue type, and stage of gland development. These findings warrant future studies aimed at understanding whether the differences in 5-HTR subtype expression and location accounts for the differences in milk secretion and lactocyte activity among cows, goats, and sheep.  相似文献   

19.
20.
Enhanced postruminal supply of Met during the periparturient period increases dry matter intake and milk yield. In nonruminants, adipose tissue is responsive to AA supply, and can use AA as fuels or for protein synthesis regulated in part via insulin and mechanistic target of rapamycin (mTOR) signaling. Whether enhancing supply of Met has an effect on insulin and mTOR pathways in adipose tissue in peripartal cows is unknown. Multiparous Holstein cows were assigned from ?28 to 60 d relative to parturition to a basal diet (control; 1.47 Mcal/kg of dry matter and 15.3% crude protein prepartum; 1.67 Mcal/kg and 17.7% crude protein postpartum) or the control plus ethyl-cellulose rumen-protected Met (RPM). The RPM was fed individually at a rate of 0.09% of dry matter intake prepartum and 0.10% postpartum. Subcutaneous adipose tissue harvested at ?10, 10, and 30 d relative to parturition (days in milk) was used for quantitative PCR and Western blotting. A glucose tolerance test was performed at ?12 and 12 d in milk to evaluate insulin sensitivity. Area under the curve for glucose in the pre- and postpartum tended to be smaller in cows fed Met. Enhanced Met supply led to greater overall mRNA abundance of Gln (SLC38A1), Glu (SLC1A1), l-type AA (Met, Leu, Val, Phe; SLC3A2), small zwitterionic α-AA (SLC36A1), and neutral AA (SLC1A5) transporters. Abundance of AKT1, RPS6KB1, and EIF4EBP1 was also upregulated in response to Met. A diet × day interaction was observed for protein abundance of insulin receptor due to Met cows having lower values at 30 d postpartum compared with controls. The diet × day interaction was significant for hormone-sensitive lipase due to Met cows having greater abundance at 10 d postpartum compared with controls. Enhanced Met supply upregulated protein abundance of insulin-responsive proteins phosphorylated (p)-AKT, peroxisome proliferator-activated receptor gamma, and fatty acid synthase. Overall abundance of solute carrier family 2 member 4 tended to be greater in cows fed Met. A diet × day interaction was observed for mTOR protein abundance due to greater values for RPM cows at 30 d postpartum compared with controls. Enhanced RPM supply upregulated overall protein abundance of solute carrier family 1 member 3, p-mTOR, and ribosomal protein S6. Overall, data indicate that mTOR and insulin signaling pathways in adipose tissue adapt to the change in physiologic state during the periparturient period. Further studies should be done to clarify whether the activation of p-AKT or increased availability of AA leads to the activation of mTOR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号